
Fly with Python
Learn Python fundamentals as you explore the world of autonomous drones with CodeAIR

Mission 1 - Welcome

Welcome to the CodeSpace
Development Environment!

A virtual world for exploring robotics with code.

We're glad you're here!
You are about to experience a powerful learning and coding environment:

Learn to code in Python by completing challenging Missions.
Test your real-world programs in simulation or on a physical device.

Ready to begin your first Mission?
Click the NEXT button...

Objective 1 - Mission Objectives

Objectives
Each Mission contains a series of Objectives. You're now reading an Objective Panel.

Objectives are numbered on the Mission Bar to the right.
Click the number to show or hide the Objective Panel.
Use the icons at the top of the Mission Bar to choose from available Missions and Packs.

The goals to complete the Objective are below:

Goal:

Click the 1 on the Mission Bar to close the Objective Panel →

Then click 1 again to bring it back!

Solution:

N/A

Objective 2 - Text Editor

Text Editor
On the left side of your screen is the text editor.

You'll be typing in Python code here!
That's how you'll control your physical or virtual device.

Go ahead and type something in!

Goal:

Complete this Objective by making any change in the text editor.

Solution:

Fly with Python Mission Content

©2025 Firia Labs Appendix A 1 of 104

https://firialabs.com/

N/A

Objective 3 - Tool Box

Your Coding Toolbox
As you work through each mission you'll be adding concepts to your toolbox.

It's an important reference you will need in later missions!
And when you are coding and debugging your own remixes.

Collect 'em ALL!

When you see a tool, CLICK on it!

You won't have anything in your toolbox unless you put it there.

Access Your Tools

You can always open up your toolbox later for reference.

Just click the business_center at the right side of the window.

Goal:

Click the build tool text above to open the Toolbox and then close the Toolbox.

Tools Found: Debugging

Solution:

N/A

Objective 4 - Simulation Controls

Simulation Controls
Below the 3D view is your Simulation Toolbar.

There are controls to select a 3D filter_hdr environment.
You can also control the videocam Camera in the 3D scene, and more!

This is a virtual camera for zooming around inside the sim, not your webcam!
You can manage with a trackpad, but a mouse is highly recommended for 3D navigation.

Click on the Camera videocam menu below.

Select Help help
Click the close inside the Camera Help window to close it.

Want to hide these instructions?

Click the close at the upper-right corner.
You can always bring an Objective back by clicking its number on the right side.
Or you can maximize it by clicking check_box_outline_blank

Goals:

Open and close the Camera Help.

Rotate the camera view around the virtual device in the 3D scene!

Solution:

Fly with Python Mission Content

©2025 Firia Labs Appendix A 2 of 104

N/A

Quiz 1 - Your First Mission Quiz

Question 1: Are you ready to learn some Python coding with your CodeAIR?

done Yes. This is simple!

close I don't think I can.

close It looks too complicated.

Question 2: Select the two things you learned in this mission.

done How to open an objective

done How to move the camera

close How to run a half marathon

close How to control the weather

Mission 1 Complete

Welcome to CodeSpace!
You've completed your first Mission.

You can always click the Mission Select icon at the upper right side of the window to go back to previous Missions.

You've learned the basics of Missions and Objectives.

Now it's time to get to know your device!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 3 of 104

Mission 2 - Introducing CodeAIR

Welcome aboard!
You’re about to embark on a thrilling adventure. I’ll be your co-pilot as we navigate the skies of Python with your CodeAIR drone.

Why learn coding with drones?

Flying is awesome, and the drones of the future will mostly fly themselves autonomously!
Drones are used in industries like film, agriculture, exploration, and science.
The ability to program a drone opens up a whole world of automation and AI.

But remember… Drones, like all tech, need coding by humans like YOU.

As you complete this hands-on course, you’ll be mastering skills that can control not only drones but ANY tech you can imagine!

Objective 1 - Behold the CodeAIR

Firia Labs CodeAIR - Fly with Python!

CodeAIR is a high performance micro-drone that's fully programmable in Python.

That means Python flies on the drone! (not on your laptop...)
With tons of sensors, LEDs, a speaker, and buttons you can program.
And of course, motors and props for flying!

Computer Vision - AI Onboard

CodeAIR has a camera - but it's not meant to be an FPV (First Person View) drone.
...unless FPV means "Flying Python Vision" that is!
Yep, your onboard Python code will use that camera (plus AI) to see stuff from the air!

Start with CODE!

In the "Fly with Python" curriculum, you'll learn about quadcopter technology and the fundamentals of
software and control systems that make drone flight possible. This is professional career stuff, not just
flying some RC planes around :-) You'll be learning principles from a variety of fields:

Computer Science
Electrical Engineering
Aerospace Engineering

Goal:

Fly with Python Mission Content

©2025 Firia Labs Appendix A 4 of 104

Click at least one of the build tools above to learn more about the CodeAIR.

Tools Found: BYTE LEDs, Speaker, Buttons, Motors and Props

Solution:

N/A

Objective 2 - Static Electricity

Careful with your CodeAIR!
A few precautions will keep it safe!

🚨 🚨 Warning!! 🚨 🚨
Static electricity is a charge ⚡ that can build up when you walk across carpet in socks or take off a wool sweater.

It causes the jolt and spark that happens sometimes when touching something grounded, like a faucet or lightswitch.

Hints:

1. Hold your CodeAIR by its prop guard, being gentle with the Connectors, LEDs, and other electronic components.
They're all exposed on the board so you can really get to know them!

2. Keep your CodeAIR in its box when not in use.
3. It's good practice to touch some grounded metal (desk, doorknob) before handling the CodeAIR to avoid damaging its sensitive

components with static electric discharge.

Goals:

Close this Objective panel to view the 3D scene, and click the yellow static electricity lightning bolt at the CPU!

Use your mouse to rotate the view as needed!

Click the lightning bolt at the USB connector!

Click the lightning bolt at the ON/OFF Switch!

Solution:

N/A

Quiz 1 - Static Response

Question 1: What should you do before handling a CodeAIR?

done Touch some grounded metal

close Jumping jacks

close Clean it with wet wipes

Objective 3 - Find the CPU

Where does the code run?
The code you write will run on the CodeAIR itself!

After you load it on there, it doesn't need your computer anymore.
This is no radio-controlled toy! It's fully autonomous!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 5 of 104

The Main CPU (Central Processing Unit) shown here is the brain of the CodeAIR, where your
Python code runs.

CodeAIR's CPU is in a module with many functions:

1. A microcontroller that executes your code.
2. A FLASH filesystem that stores code and data files.
3. Temporary memory (RAM) for a fast-access scratchpad.
4. There's even a built-in Wi-Fi radio!

The CPU also interacts with all CodeAIR's onboard peripherals.

Sensors, buttons, LEDs.
And a second dedicated flight control CPU, running in parallel!

The CPU is an amazing little device!

Can you find the CPU?

Goal:

Click on the main Central Processing Unit (CPU) in the 3D Scene.

Tools Found: CPU and Peripherals

Solution:

N/A

Objective 4 - Power Switch

Power Switch
CodeAIR has a slide switch with two positions: 1=ON, and 0=OFF.

You need to set the switch to the ON (1) position for the CodeAIR to fully power-up!

CodeAIR will still charge its battery, even with the power switch in the OFF (0) position, if you have the
USB connected. More about that later!

Battery
CodeAIR's battery is a Lithium Polymer single cell (1S) pack.

Notice how it is inserted inside the landing sled.
You can flex the retaining tabs slightly downward to allow the battery to slide out.
The white battery connectors are polarized, meaning they only fit one way. Take a close look at how the slot lines up so they fit
together neatly!

Physical Interaction: Turn it ON

Grab your CodeAIR and set its switch to ON (1)

Goals:

Click on the Power Switch in the 3D Scene.

Click the white battery connector in the 3D scene.

Tools Found: USB

Solution:

Fly with Python Mission Content

©2025 Firia Labs Appendix A 6 of 104

N/A

Objective 5 - Connect the USB

Now, use the USB cable to connect the CodeAIR to your computer.

warningwarning Note warningwarning
You may see a window pop-up when you plug in the CodeAIR.

Feel free to close this window; you won't need it for CodeSpace.

Connecting the USB cable does two things:

1. It lets your computer communicate with the CodeAIR.
2. It provides 5 volt DC power to the CodeAIR.

USB can power everything but the motors, even without a battery!

And it charges the battery while plugged-in.

Physical Interaction: Plug In

Connect the USB cable between your computer and the CodeAIR.

Goal:

Click on the USB connection port in the 3D Scene.

Tools Found: USB

Solution:

N/A

Objective 6 - Link to CodeSpace

Link CodeAIR to your browser so it can be used with CodeSpace
Connection Steps

1. Make sure the USB cable is connected both to your PC and the CodeAIR.

2. Click the red bar below the code editor to open the Select Target dialog.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 7 of 104

The connection bar looks like this:

The bar should look like this if your device is already connected:

3. In the Select Target dialog, click CONNECT.

4. The first time your browser connects to a CodeAIR it will request permission to connect.

Select CodeAIR from the device list and click Connect.

Physical Interaction: Troubleshooting Connections

If you are having trouble getting CodeSpace to recognize your CodeAIR:

1. Make sure CodeAIR's power switch is ON (set to "1").
2. Check that your USB cable is fully plugged in to CodeAIR.
3. Try connecting with CodeAIR's battery unplugged.
4. Disconnect USB, reload your browser window, then reconnect USB.

Find more troubleshooting tips at https://docs.firialabs.com/codeair/hardware_reference/Troubleshooting.html

Goal:

Link your CodeAIR to CodeSpace.

Hint: Make sure only one CodeAIR is connected.

Solution:

N/A

Objective 7 - Save the Code!

Time to create a file!
When you type code into the text editor panel on the left, it is automatically saved to your personal file-system in the CodeSpace
cloud!

Code is stored in files on a computer just like any other document.

Each code file should have a name that states its purpose.

You should make a new file for each objective. Here's how:

1. Click the File menu button above the code editor.
2. Click New File...
3. Type in the name you'd like to give your new file.
4. Click the Create button.

Your new file should open in your code editor!!

Goal:

Create a new file named: Lights1

If this file is already in your file system go ahead and use the New File... button anyway!

Solution:

N/A

Objective 8 - The CodeTrek

Fly with Python Mission Content

©2025 Firia Labs Appendix A 8 of 104

https://docs.firialabs.com/codeair/hardware_reference/Troubleshooting.html

Check out the CodeTrek!!
The CodeTrek is a CodeSpace tool that gives you:

A starting point for your program.
Detailed information about lines of code you need to write.
Explanations of coding topics.
Holes ("To-Do items") for you to fill in on your own!

Comments

When you write code, sometimes you'll want to add some notes - maybe to remind yourself of why you did something, or to explain
things to someone else who might read your code.

In programming languages these notes are called comments. The computer ignores them!
You don't have to type the comments from the CodeTrek!
But you may want to add some comments of your own, taking notes as you learn :-)

To-Do Items

A # TODO: in the code is a standard reminder comment.

It tells you to come back here because there is still work TO DO!!
Professional programmers often use # TODO comments, to mark "unfinished business".
When you see # TODO in the CodeTrek, that's where YOU need to write the actual code!

Click the directions_walk CodeTrek button below to learn more about the code for an objective.

CodeTrek:

1 from codeair import *

2 # TODO: Light all the blue LEDs

Goal:

Open the CodeTrek to learn about your code with the directions_walk button.

Tools Found: Comments

Solution:

N/A

Quiz 2 - Questions TODO

Question 1: What is the CPU's job on the CodeAIR?

done Execute your code

close Figure out what you were thinking

close Provide +5 Volt power

The CodeTrek will give you information about lines of code or give you more knowledge on a topic.

A # TODO: tells you to come back here because there is still work TO DO!!

TODOs are used in the real world all the time!
Most code editors recognize # TODO and highlight the line in your code!!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 9 of 104

Question 2: Which of the following comments is a standard reminder for you to fill-in actual code here?

done # TODO: fix this

close # good code below

close # x should be a float

Objective 9 - Light's On

Now it's time for you to run some code!
warningwarning Notice warningwarning

Run It!

CodeTrek:

1 from codeair import *
2 leds.set(0, 50)

Hint:

Well, all this punctuation has a purpose.

We are using the codeair module - pre-loaded code that makes it easier to do things with the codeair.

The * means import everything from that module (it's called a wildcard).

Don't worry, you will get plenty of practice with this - and more complete explanations are in store. But to start out, it's good to
just get some code running!

Goals:

Open the CodeTrek directions_walk to see the code.

RUN play_arrow your code to light a BLUE LED on your CodeAIR.

Make sure your code matches the CodeTrek!

Tools Found: Punctuation, Syntax Highlighting, BYTE LEDs, Motors and Props

Solution:

1 from codeair import *
2 leds.set(0, 50)

Objective 10 - More Lights

Light it UP!
Okay, you're really getting hands-on now.

It's time to roll up your sleeves and test your knowledge.

Did you pick up the tool for the BYTE LEDs ?

If not, go get it!

Set LED number 0 to 50%

Fly with Python Mission Content

©2025 Firia Labs Appendix A 10 of 104

Review the two lines of Python code you wrote:

from codeair import *
leds.set(0, 50)

Even without reading the ToolBox documentation, you might guess that this sets an LED to some value.

You could read it "Set LED zero to 50%".
So the first number 0 is which LED, and the second number is 0-100% brightness!

Can you light up ALL those blue LEDs?

There are a few ways to accomplish this!
The most straigtforward way is just to copy/paste that leds.set(n, 50) seven more times, replacing n with the numbers 1
through 7.

Check the 'Trek!

Your turn - get LIT!

Please follow the "straightforward" method from the CodeTrek first, so I can check your work.
After that feel free to try more advanced approaches if you're so inclined!

CodeTrek:

1 from codeair import *
2 leds.set(0, 50)
3 leds.set(1, 50)

4 # TODO: continue to light next six LEDs...

Goal:

RUN play_arrow your code to light all the blue LEDs.

Always check the CodeTrek!

Tools Found: BYTE LEDs

Solution:

 1 from codeair import *
 2 leds.set(0, 50)
 3 leds.set(1, 50)
 4 leds.set(2, 50)
 5 leds.set(3, 50)
 6 leds.set(4, 50)
 7 leds.set(5, 50)
 8 leds.set(6, 50)
 9 leds.set(7, 50)
10

Mission 2 Complete

You've completed the first project!

...and you're at the start of a fantastic adventure. From this small first project, your journey will take you to greater heights - more
projects are ahead to challenge and amaze you!

A world of possibilities awaits you...

Just copy the same line, changing the n to light LEDs 0-7.

You can set them all to 50% as shown, or get creative!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 11 of 104

Mission 3 - Pre-Flight Check

Welcome to
Ground School
This pre-flight mission will give you a "crash course" in some coding skills you will be using
to get your CodeAIR flying.

But before you take to the air, you have to learn how to control this machine on the
ground!

Pre-Flight Checks

A trained pilot will go through a detailed checklist before every flight.

Gotta make sure all systems are in working order.
That includes lighting systems, safety devices, control surfaces, engines, and navigation sensors.

You should make a habit to visually inspect CodeAIR before every flight!

Mission Targets

You have a few Objectives in this Mission!

Continue exploring CodeAIR's lighting system - the blue LEDs and more!
Learn about the speaker and add sounds to your drone's repertoire.
On the aeronautics front, you will program the onboard lighting system to show the colors of the international Aircraft Position
Lighting scheme.

Objective 1 - Lighting Beacon

Blink Those LEDs!
Sure, your code can light up the blue LEDs, but can you BLINK them?

Blinking an LED is the "Hello, World" of embedded systems programming.
Oh, did you know that's what you're doing? Yeah, that's writing code that goes in a tiny
microcontroller embedded in some product that nobody realizes there's actually software
running inside :-)

Like... AirPods, or stage lights, or a stopwatch.

Slowing it Down
By now, hopefully you've been lighting up multiple blue LEDs.

Your program lights the LEDs and ends pretty quickly!
And even though your Python code is executed one line at a time, all the LEDs seem to light up at once.

But what if you want to blink an LED on and off a few times?

Create a New File!

Use the File → New File menu to create a new file called CycleLEDs.

Run It!

Type the following code into the text editor and RUN it!

This should blink LED 0 twice

Remember, you don't have to type the # comments.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 12 of 104

from codeair import *

leds.set(0, 50) # ON
leds.set(0, 0) # OFF
leds.set(0, 50) # ON
leds.set(0, 0) # OFF

warningwarning Note: This is not gonna blink as expected! warningwarning

What's Up?
Test the code above! It doesn't blink properly because you need to slow the computer down...

Concept: sleep

When you want to control the pace of actions in your code, you have to specifically state
where and how much delay you want!

Check out the timing tool to learn how you can use Python's time module and the
sleep() function to slow down the action!

Blink!
All you need to add to the test code above is a few delays.

Pause a bit after the light turns ON...
And don't forget to wait a moment after the light is OFF also!

Check the 'Trek!

As usual, open up the CodeTrek to guide your coding on this Objective!

CodeTrek:

 1 from codeair import *
 2 from time import sleep

 3
 4 leds.set(0, 50)
 5 sleep(1)
 6 leds.set(0, 0)
 7 sleep(1)

 8
 9 # TODO: Blink 3 more times!
10 # (Don't type this comment! You write the code here.)

Don't forget to import the sleep() function.

On for 1 second... Off for 1 second.

Four groovy lines of Python code!

Hey, a #TODO comment!

I told ya there would be some of these!

Remember?

Fly with Python Mission Content

©2025 Firia Labs Appendix A 13 of 104

Goal:

Blink a blue LED at least four times, the hard way!

(That means no loops if you're an advanced student :-)

Tools Found: BYTE LEDs, LED, Comments, Timing, import, Editor Shortcuts

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 leds.set(0, 50)
 5 sleep(1)
 6 leds.set(0, 0)
 7 sleep(1)
 8 leds.set(0, 50)
 9 sleep(1)
10 leds.set(0, 0)
11 sleep(1)
12 leds.set(0, 50)
13 sleep(1)
14 leds.set(0, 0)
15 sleep(1)
16 leds.set(0, 50)
17 sleep(1)
18 leds.set(0, 0)
19 sleep(1)
20

Objective 2 - Loop de Loop

Keep CodeAIR Flashing!
You could blink a few more times by just copying the same lines over and over.

But it would be much better AND less typing to use an infinite loop!

Yes, you need to move your LED flashing code inside a loop!

Concept: while loop

A while condition: statement tells Python to repeat the block of code indented beneath it as long as the given condition is
True.

The CodeTrek uses the literal value True as the condition, so we have an infinite loop - one that never ends, because True
is always... True!

So in Python your infinite loop will look something like:

while True:
LED on
pause
LED off
pause

Note two important things here:

You don't need to type the comments. This is where you figure out
what code needs to go here to get the job done :-)

Copy and Paste

You might want to use the editor shortcuts to reduce the typing on this one.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 14 of 104

1. There is a colon (:) at the end of the line with while. That means a new block of code begins on the next line.
2. The LED/pause code block is indented on the lines following the while True:

Indentation is how you tell Python what belongs inside the loop.

Why while True: ?
Check out the loop tool to learn more about the while condition: statement.

You'll learn to use other conditions to control how many times the loop repeats.
But to repeat forever, just use the value True.

Check the 'Trek!

Modify your code to put the blinking inside a loop. Check out the editor shortcuts to learn how to easily indent a whole
block of code to place it "inside" your new loop.

CodeTrek:

 1 # TODO: Import everything from the codeair library.
 2 # TODO: Import sleep from the time library.

 3
 4 while True:
 5 leds.set(0, 50)
 6 sleep(0.1)
 7 # TODO: LED off
 8 sleep(0.2)

 9

Goal:

Add a while loop to get your blue LEDs blinking continuously.

Tools Found: Loops, Indentation, bool, Editor Shortcuts, BYTE LEDs, import

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 leds.set(0, 50)
 6 sleep(0.1)
 7 leds.set(0, 0)
 8 sleep(0.2)

Quiz 1 - Blinking LEDs

Question 1: How is your Python code able to call the sleep() function?

done from time import sleep

You should already have the import statements from your previous code. Just make sure they're still there.

from codeair import * # For `leds`
from time import sleep # For `sleep()`

All you need is four lines of code inside the while loop.

They are indented - that means they're inside the loop!

Always make sure your indented blocks line up neatly!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 15 of 104

close from codeair import *

close It is a built-in function, so it is always available

close from sleep import delay

Question 2: What does sleep(1) do?

done Pauses code execution for 1 second

close Pauses code execution for 1 microsecond

close Stops the program

close Disables all peripherals

Question 3: What line of code will turn off the last blue LED?

done leds.set(7, 0)

close leds.set(8, 0)

close leds.set(8, OFF)

close leds.off(7)

Objective 3 - Light Cycle

Light Cycle

Check the 'Trek!

Run It!

Observe the LEDs when you run this code.

Can you see them continuously cycling every time your loop repeats?

warningwarning Uh-oh, mine's not working right either! warningwarning

Don't worry, you'll fix this in the next Objective!

If you want to try fixing it now, that's cool too! You can compare your solution on the next Objective :-)

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 leds.set(0, 50)
 6 sleep(0.1)
 7
 8 leds.set(1, 50)
 9 sleep(0.1)
10
11 leds.set(2, 50)
12 sleep(0.1)
13
14 # TODO: Blink LEDs 3-7

Fly with Python Mission Content

©2025 Firia Labs Appendix A 16 of 104

Hint:

Note to Advanced Students
Once again, you need to write this code the long way.

The goal here is to gradually introduce topics, and show why more advanced techniques are needed!

The CodeTrek shows the form I'm looking for to pass this Objective.

Goal:

Light up all eight LEDs in sequence.

And repeat, inside a while loop!

Tools Found: Loops, BYTE LEDs

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 leds.set(0, 50)
 6 sleep(0.1)
 7
 8 leds.set(1, 50)
 9 sleep(0.1)
10
11 leds.set(2, 50)
12 sleep(0.1)
13
14 leds.set(3, 50)
15 sleep(0.1)
16
17 leds.set(4, 50)
18 sleep(0.1)
19
20 leds.set(5, 50)
21 sleep(0.1)
22
23 leds.set(6, 50)
24 sleep(0.1)
25
26 leds.set(7, 50)
27 sleep(0.1)
28
29

Objective 4 - Fancy LED Fix

Debugging
Do you see what's happening with your LED animation?

The code I started you with in the CodeTrek never turned the LEDs OFF!
Right, that bug was my fault! Next one's on you ;-)

Covering Your Tracks
Okay, so a little more code needs to be added to your program.

This Objective is to "Swoosh" all eight LEDs.

I've shown you the first three above... You fill-in the rest!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 17 of 104

After you leave an LED on for a bit, you need to turn it off before lighting up the next one.
...or you could wait till after you light up the next one. Your choice!

Check the 'Trek!

Fix up your code, and let's see those lights cycling beautifully.

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 leds.set(0, 50)
 6 sleep(0.1)
 7 leds.set(0, 0)

 8
 9 leds.set(1, 50)
10 sleep(0.1)
11 # TODO

12
13 leds.set(2, 50)
14 sleep(0.1)
15 # TODO
16
17 leds.set(3, 50)
18 sleep(0.1)
19 # TODO
20
21 leds.set(4, 50)
22 sleep(0.1)
23 # TODO
24
25 leds.set(5, 50)
26 sleep(0.1)
27 # TODO
28
29 leds.set(6, 50)
30 sleep(0.1)
31 # TODO
32
33 leds.set(7, 50)
34 sleep(0.1)
35 # TODO
36
37

Goal:

Modify your program to turn the LEDs off as well!

You should see the LEDs moving continuously as your program loops.

Tools Found: Debugging, BYTE LEDs

Solution:

 1 from codeair import *
 2 from time import sleep

Set the LED brightness to 0 to turn it off.

Same deal - each LED needs to be turned off, just like LED 0 above.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 18 of 104

 3
 4 while True:
 5 leds.set(0, 50)
 6 sleep(0.1)
 7 leds.set(0, 0)
 8
 9 leds.set(1, 50)
10 sleep(0.1)
11 leds.set(1, 0)
12
13 leds.set(2, 50)
14 sleep(0.1)
15 leds.set(2, 0)
16
17 leds.set(3, 50)
18 sleep(0.1)
19 leds.set(3, 0)
20
21 leds.set(4, 50)
22 sleep(0.1)
23 leds.set(4, 0)
24
25 leds.set(5, 50)
26 sleep(0.1)
27 leds.set(5, 0)
28
29 leds.set(6, 50)
30 sleep(0.1)
31 leds.set(6, 0)
32
33 leds.set(7, 50)
34 sleep(0.1)
35 leds.set(7, 0)
36
37

Quiz 2 - Infinite Loops

Question 1: How many times will the loop blink LED 0?

while True:
 leds.set(0, 50)
 sleep(1)
leds.set(0, 0)
sleep(1)

done LED 0 will stay on and not blink

close LED 0 will stay off and not blink

close Continuously - infinite loop

close 0 times - loop will not execute

Question 2: How many times will the loop blink LED 0?

while False:
 leds.set(0, 50)
 sleep(1)
 leds.set(0, 0)
 sleep(1)

done 0 times - loop will not execute

close Continuously - infinite loop

close 1 time

Fly with Python Mission Content

©2025 Firia Labs Appendix A 19 of 104

close LED 0 will stay on and not blink

Objective 5 - Wild Blue Yonder

Multimedia
You've seen some lighting features of CodeAIR, but what about sound?

There's a lot of capability in the speaker to explore!

Does a drone really need sound?
When airborne, you'll find the motors provide quite a lot of sound on their own!

So much in fact, that the speaker has a hard time competing.
But there are quite a few situations where you'll want CodeAIR to alert you before, after, or even
during flight. And sound is an excellent way to do that!

Concept: speaker

The speaker allows you to provide a frequency in Hertz and a duration in milliseconds.

speaker.beep(440, 200) # Play 440Hz tone for 200ms

Those frequencies can be notes of a musical melody, crazy sound effects, whatever you want!

Musical Melody
For your first speaker assignment you are to play a melody!

Musical notes represent different sound frequencies.
For this melody you will use the following notes. I'm giving you these as Python constants that you can copy and paste into
your code. (click the icon on the right!)

Notes used in the melody
D5 = 587
E5 = 659
F5 = 698
FS5 = 740
G5 = 784

And Lights, Too!
Wouldn't it be awesome to play a melody along with the lights you already have?

When you light an LED, play a note.
You may need to adjust the timing a little, but it sounds simple so far!

A Fitting Tune
Here's the tune you'll be playing, in Scientific Pitch Notation

E5 - G5 - G5 - F5 - E5 - D5 - E5 - F5 - F#5 - G5

Every note should be played for a given duration (milliseconds) and after it stops take a musical "rest" using sleep(sec).
What is this melody? Try coding it first, and maybe you'll recognize it! Spoiler Alert: See the emoji_objectsHints to learn about the melody.

Sequence the notes and lights per the table below from left to right:

Melody →
LED 0 1 1 2 3 4 5 6 7 STA
Note E5 G5 G5 F5 E5 D5 E5 F5 FS5 G5
Duration (ms) 100 100 700 100 100 100 400 400 400 500

Fly with Python Mission Content

©2025 Firia Labs Appendix A 20 of 104

https://en.wikipedia.org/wiki/Scientific_pitch_notation

Melody →
Rest (sec) 0.2 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Save to a New File!

Use the File → Save As menu to create a new file called Melody.

Same Starting Code, No Loop

If you Save-As the code from the last Objective, you just need to use the SHIFT-TAB editor shortcut to un-indent the code so it's no
longer inside your while loop. (And delete the while statement of course)

Bonus LED

The melody finishes by lighting the STA LED, positioned near the USB connector.

Check the 'Trek!

The CodeTrek gives you the first three notes and lights. You'll take it from there and complete the melody!

Run It!

Now sit back, watch AND listen to the show!

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 # Notes used in the melody
 5 D5 = 587
 6 E5 = 659
 7 F5 = 698
 8 FS5 = 740
 9 G5 = 784

10
11 leds.set(0, 50) # LED 0
12 speaker.beep(E5, 100) # Note E5, duration 100
13 sleep(0.2) # Rest 0.2
14 leds.set(0, 0)

15
16 leds.set(1, 50) # LED 1
17 speaker.beep(G5, 100)
18 sleep(0.1)
19 speaker.beep(G5, 700)
20 sleep(0.3)
21 leds.set(1, 0)

Defining the notes. Paste the constants you copied from the Objective overview. (you did copy them, right?)

These are the sound frequencies of each note in Hertz (cycles per second).

A single note.

Each note will look like this, pretty much just adding a speaker.beep() to the code
you already have that sequences LEDs.

Whoa!? A double note!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 21 of 104

22
23 # LED 2
24 # TODO

25
26 # LED 3
27 # TODO
28
29 # LED 4
30 # TODO
31
32 # LED 5
33 # TODO
34
35 # LED 6
36 # TODO
37
38 # LED 7
39 # TODO
40
41 # LED STA
42 leds.set_status(50)
43 speaker.beep(G5, 500)
44 sleep(0.1)
45 leds.set_status(0)

Hint:

The US Air Force
Your melody captures the signature phrase from the official US Air Force Song:

"Off we go, into the Wild Blue Yonder!"

Relax, this is the only case with two notes on a single LED.

The rest of the notes will be just like the first one:

Add the speaker.beep() and adjust the sleep() time, and you're good!

Your turn - Same pattern as the first note.

Refer to the table in the overview for the LED/Note/Duration/Rest values.

The Bonus LED

Just needed one more. The cherry on top!
Last one's on me :-)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 22 of 104

Goal:

Play the full melody as described above, complete with Light Show!

Tools Found: Speaker, Constants, Editor Shortcuts, Loops, BYTE LEDs

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 # Notes used in the melody
 5 D5 = 587
 6 E5 = 659
 7 F5 = 698
 8 FS5 = 740

Fly with Python Mission Content

©2025 Firia Labs Appendix A 23 of 104

 9 G5 = 784
10
11
12 leds.set(0, 50)
13 speaker.beep(E5, 100)
14 sleep(0.2)
15 leds.set(0, 0)
16
17 leds.set(1, 50)
18 speaker.beep(G5, 100)
19 sleep(0.1)
20 speaker.beep(G5, 700)
21 sleep(0.3)
22 leds.set(1, 0)
23
24 leds.set(2, 50)
25 speaker.beep(F5, 100)
26 sleep(0.1)
27 leds.set(2, 0)
28
29 leds.set(3, 50)
30 speaker.beep(E5, 100)
31 sleep(0.1)
32 leds.set(3, 0)
33
34 leds.set(4, 50)
35 speaker.beep(D5, 100)
36 sleep(0.1)
37 leds.set(4, 0)
38
39 leds.set(5, 50)
40 speaker.beep(E5, 400)
41 sleep(0.1)
42 leds.set(5, 0)
43
44 leds.set(6, 50)
45 speaker.beep(F5, 400)
46 sleep(0.1)
47 leds.set(6, 0)
48
49 leds.set(7, 50)
50 speaker.beep(FS5, 400)
51 sleep(0.1)
52 leds.set(7, 0)
53
54 leds.set_status(50)
55 speaker.beep(G5, 500)
56 sleep(0.1)
57 leds.set_status(0)

Objective 6 - In Living Color

In Living Color!
Now that you have demonstrated full command over the blue LEDs, it's time to invite an even
brighter and more colorful set of lights to the party!

After all, if you want to put on an airborne light show you'll need really dazzling lights.
How about some really bright LEDs you can program to any RGB Color you desire!?

Concept: pixel LEDs

There are 8 pixel LEDs: 4 on top, and 4 below.

They're numbered 0-7
You can set them to any color with pixels.set(n, color)

Ex: The following code sets pixel 0 to RED

Fly with Python Mission Content

©2025 Firia Labs Appendix A 24 of 104

from codeair import *
pixels.set(0, RED)

The pixels.set() function takes two inputs.

The first is the number of the pixel you want to set
The second is a color.
Use the color BLACK to turn the pixel OFF.

There are many more advanced pixel LED features you'll learn to use later.

Ready to Test Them?

Run It!

Goals:

Get colorful. I want to see some pixels get lit up!

Experiment with the code! Try an LED combination and run the code.

Then make some changes and run again. Do this at least three times.

Tools Found: BYTE LEDs, RGB Colors, RGB "pixel" LEDs

Solution:

1 from codeair import *
2 pixels.set(0, RED)

Objective 7 - Sky Lights

Sky Lights
For your "Light Show Finale" the lights need to dance around CodeAIR!

For that purpose a new Python tool will help.
For the win?

Concept: for loop

So far you have been using the while loop as your repeating workhorse.

The while loop will always be your go-to for general purpose looping tasks.
But sometimes your needs are more specialized.

Another Loop - the for loop

Often times when looping you are going through a sequence of some kind.

This is called iterating.

Example:

from codeair import *

for color in (RED, GREEN, BLUE):
 pixels.set(0, color)

Can you guess what the above does? Give it a try!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 25 of 104

For a change, try range
The range function is another awesome Python built-in function you'll often use with for loops:

Example:

from codeair import *

Flash all 8 pixels in sequence
for n in range(8):
 pixels.set(n, GREEN)
 sleep(0.2)
 pixels.set(n, BLACK)
 sleep(0.2)

The above is the same as if you wrote for n in (0, 1, 2, 3, 4, 5, 6, 7) but much easier to type!

Run It!

Go ahead and try the examples above.

Try adding more colors, or looping over a smaller range.

Finale
Armed with new looping tools, you can make your light show more dazzling than ever!

You will be looping through colors
And for each color, looping through all eight LEDs

That's one for loop nested inside another for loop!

Check the 'Trek!

Surprise! There's not a lot of code there :-)

More powerful coding tools let you do more with less!

Customize it!

You could try more RGB Colors
And since the numerical order of the pixels is a little odd, make your own sequence using the constants, for example:
(TOP_FRONT_LEFT, TOP_FRONT_RIGHT, TOP_REAR_RIGHT, TOP_REAR_LEFT)

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 for color in (RED, GREEN, BLUE):
 6 for n in range(8):
 7 pixels.set(n, color)
 8 sleep(0.05)

 9
10

Goal:

This is the whole solution!

There's even a bonus outer while loop to keep the show running forever!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 26 of 104

Dazzle me with colorful, flashing, cycling lights!

Tools Found: Loops, Iterable, Ranges, Built-In Functions, RGB Colors, RGB "pixel" LEDs, Constants

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 for color in (RED, GREEN, BLUE):
 6 for n in range(8):
 7 pixels.set(n, color)
 8 sleep(0.05)
 9
10

Quiz 3 - More Loops

Question 1: What line of code defines a constant?

done D5 = 587

close from time import sleep

close for n in range(8)

close pixels.set(n, color)

Question 2: How many times will the sound beep?

from codeair import *
from time import sleep

for n in range(1, 2, 3):
 speaker.beep(440, 200)
 sleep(0.2)

done 3 times

close 2 times

close 1 time

close There is an error in the code.

Question 3: How many times will the pixel blink?

from codeair import *
from time import sleep

for n in range(5):
 pixels.set(0, BLUE)
 sleep(0.5)
 pixels.set(0, BLACK)
 sleep(0.5)

done 5 times

close 4 times

close Infinite

Fly with Python Mission Content

©2025 Firia Labs Appendix A 27 of 104

close There is an error in the code.

Question 4: How many total times will any pixel change color?

from codeair import *
from time import sleep

for color in (RED, WHITE, BLUE):
 for n in range(8):
 pixels.set(n, color)
 sleep(0.25)

done 24

close 8

close 3

close 16

Objective 8 - Aero Lights

Aeronautical Navigation Lighting
Ever notice the lights on aircraft at night? ...or on marine vessels for that
matter?

There's an international standard color scheme to indicate the
orientation of the craft!

Drones Too?
Indoor drones aren't required to fly these colors, but it can be very helpful
to visually identify orientation from across the room!

Larger outdoor drones have FAA required anti-collision lights (more
on that below).
And while not strictly required for UAVs (Unmanned Aerial Vehicles),
standard color navigation lights ensure that manned aircraft can see
and avoid such drones.

Concept: Standard Navigation Lights

These are solid (not flashing) lights positioned as follows:

Green on the right (starboard side)
Red on the left (port side)
White on the tail

Alright then, ready to light up CodeAIR properly?

Create a New File!

Use the File → New File menu to create a new file called RunningLights.

Navigation Lights for CodeAIR
Can you use the pixel LEDs to implement this lighting scheme?

To assist, use the constants defined in the codeair module.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 28 of 104

TOP_FRONT_RIGHT, TOP_FRONT_LEFT, TOP_REAR_RIGHT, TOP_REAR_LEFT
BOTTOM_FRONT_RIGHT, BOTTOM_FRONT_LEFT, BOTTOM_REAR_RIGHT, BOTTOM_REAR_LEFT

Run It!

Go ahead, start by typing in the code below.

Test this out, and then add the other Navigation Lights.
Be sure you have RED, GREEN, and WHITE lights - TOP and BOTTOM!

from codeair import *
pixels.set(TOP_FRONT_LEFT, RED)

Anti-Collision Lights

Check the 'Trek!

Run It!

Check your lighting! Would other pilots understand what's happening with your drone and be able to navigate around it?

Even UAVs have to be mindful of international standards!

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 # Standard Navigation Lights (solid)
 6 # Left = Portside
 7 pixels.set(BOTTOM_FRONT_LEFT, RED)
 8 pixels.set(TOP_FRONT_LEFT, RED)
 9
10 # Right = Starboard
11 pixels.set(BOTTOM_FRONT_RIGHT, GREEN)
12 pixels.set(TOP_FRONT_RIGHT, GREEN)
13
14 # Back = Aft
15 pixels.set(BOTTOM_REAR_LEFT, WHITE)
16 pixels.set(TOP_REAR_LEFT, WHITE)
17 pixels.set(BOTTOM_REAR_RIGHT, WHITE)
18 pixels.set(TOP_REAR_RIGHT, WHITE)

19
20 # Anti-Collision Strobe Lights
21 sleep(1.0)
22 # TODO: bright whites...
23 sleep(0.02)

24

Goal:

Your basic, friendly neighborhood "Standard Navigation Lights".

No mystery here... except why the while loop? More on that next...

Anti-Collision Strobe Lights

Once per second use the pixels.fill(WHITE, brightness=50) function to flash a bright WHITE pulse
of light from all the pixels.

This loop sets the Standard Navigation Lights, then after 1 second blips
a very short pulse of bright WHITE, then restores Standard Lights again, and so on.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 29 of 104

Show the Red/Green/White Standard Navigation Lights on all eight pixel LEDs.

Also implement Anti-Collision Lights as a once-per-second WHITE strobe.

Tools Found: RGB "pixel" LEDs, Constants, Loops

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5 pixels.set(BOTTOM_FRONT_LEFT, RED)
 6 pixels.set(TOP_FRONT_LEFT, RED)
 7 pixels.set(BOTTOM_FRONT_RIGHT, GREEN)
 8 pixels.set(TOP_FRONT_RIGHT, GREEN)
 9
10 pixels.set(BOTTOM_REAR_LEFT, WHITE)
11 pixels.set(TOP_REAR_LEFT, WHITE)
12 pixels.set(BOTTOM_REAR_RIGHT, WHITE)
13 pixels.set(TOP_REAR_RIGHT, WHITE)
14 sleep(1.0)
15 pixels.fill(WHITE, brightness=50)
16 sleep(0.02)
17

Mission 3 Complete

Brilliant Lighting!
You've Learned So Much!

Cycling those blue LEDs like a Python coding boss!
Mastering the speaker with an aeronautically-approved melody!
And adhering to international lighting standards. Awesome.

With Meaning

Hey, you're not just "pretending" to develop embedded software for a UAV here.

You are doing it!
CodeAIR is not gonna fly properly unless you make it so.
And you're writing code the same way professional engineers do it, even on the most sophisticated drones!

Congrats on getting this far. Keep going on your journey!

Remix Plz!?
Oh, and one more thing. Take some time to remix what you just did.

You need to really understand this stuff. Make changes to your code, experiment!
From here on out, do NOT type in code if you don't at least THINK you know what it does!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 30 of 104

Mission 4 - Flight Safety

Flight Safety
Ready to get those motors running?

This Mission will get you there.
But with power comes responsibility!

Quadcopter Safety Guidelines
CodeAIR is designed to be a durable and safe nano-quadcopter for use in close-proximity indoor environments. However, even small
drones require caution to ensure safety. Reckless or improper usage can lead to injury!

Protective Gear - Always wear face and eye protection, such as safety glasses, when operating CodeAIR or any powered
device with moving parts.
Propeller Safety - While CodeAIR’s propellers are designed to minimize injury risks, you must avoid any contact with moving
parts, especially around your face and eyes.
Supervised Use - CodeAIR is safe for students but should always be used under adult supervision to reinforce safety
protocols.
Flight Zone - Ensure CodeAIR operates within a designated, clear area with no obstacles or bystanders within reach of the
drone’s flight path.

Mission Targets

In this mission you will code a set of Safety Procedures. CodeAIR will be flying autonomously under the control of the Python code
you write and load into it. Just like the "Lights and Sounds" projects you have already completed, once the code is running you can
just stand back and watch!

This mission will provide:

A procedure to "Arm" CodeAIR reliably, so it never takes off "accidentally".
A clear warning indicator, alerting people to stand back prior to takeoff.
Understanding the quadcopter power system - motors and propellers.

Objective 1 - Arm

Safety Interlocks
Before you enable the motors on CodeAIR, you must code some safety interlocks.

When making a product (including writing software) you need to think through the "user experience" or UX.
Say your product is an autonomous drone that maps the dimensions of a room. How would a user start the drone?

Pre-Flight Steps
It could be surprising or even dangerous if CodeAIR started spinning propellers at full speed and jumped
into the air immediately when the code runs. So the way your "Light Show" code runs right away could be
problematic!

A much safer plan is for your drone to wait until a button is pressed. Then it can generate warning beeps
from the speaker as well as some flashing warning lights on the pixel LEDs to show that the drone is
"armed" for takeoff.

After that, a second button press could confirm that the user is truly ready to take off.

Sounds pretty simple, but you're going to need a few new Python concepts to get this done!

Concept: Button Input

CodeAIR has two buttons you can read from your Python code: B0 and B1

Check for a button B0 press with the following code:

buttons.was_pressed(BTN_0) # True if button was was_pressed

Fly with Python Mission Content

©2025 Firia Labs Appendix A 31 of 104

Arm Button

Concept: Branching 'if' statement

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:

 5
 6 # Wait for first "ARM" button press
 7 while True:
 8 # Blink
 9 leds.set(0, 50) # LED near B0
10 sleep(0.1)
11 leds.set(0, 0)
12 sleep(0.2)
13
14 if buttons.was_pressed(BTN_0):
15 break

16
17 # Armed!
18 pixels.fill(YELLOW)

19
20 # Wait for second "CONFIRM" or "DISARM" button press
21 while True:
22 # Blink
23 leds.set(7, 50) # LED near B1
24 sleep(0.1)
25 leds.set(7, 0)
26 sleep(0.2)
27
28 if buttons.was_pressed(BTN_0):
29 break # Disarm

The whole program loops interminably!

Okay, another while loop.

This time you're blinking blue pixel LED 0 as you've done before.
But wait... what's this?

Every time around the loop you're checking for a button press!

And if it's pressed: BLAMMO! - break right outta here.

Show the user that CodeAIR is ARMED!

Note:

Check your indentation, people!

I'm serious about this.
See the nice guidelines showing the indentation levels.

Make your indentation neat and pretty!

This looks almost exactly like the first loop.

Only difference is now you're blinking LED 7, near button B1.

Soon you will add code here to check for B1, letting the user "CONFIRM" the launch.

But for now, just check B0 → if it's pressed, disarm the drone.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 32 of 104

30
31 # Disarmed
32 pixels.off()

33

Hints:

Struggling?
There are a lot of new concepts here, but the CodeTrek has your back on this one. All the code is given to you there.

If you are having trouble, compare your code to the CodeTrek.

Pay close attention to indentation.

If there are error messages, check closely on or near the line number where the error occurs.

Bouncy Buttons?
Yes, they are!

You'll tackle that in the next Objective.

Need More Help?
Ask an LLM! Here's the prompt I provided to ChatGPT to get the annotated code below:

"Can you provide an annotated version (comments inline with code) that explains this code to a very new Python
programmer?"

Here's a line-by-line explanation of the code, providing comments to guide a new Python programmer:

from codeair import * # Import everything from the codeair library, which has controls for CodeAIR.
from time import sleep # Import the sleep function to pause the code for a specific time.

Main loop that will keep the code running
while True:

 # Inner loop to wait for the first button press to "ARM" the drone.
 while True:
 # Blink the blue LED near button B0
 leds.set(0, 50) # Turn on the LED near B0 at a brightness of 5 0.
 sleep(0.1) # Pause for 0.1 seconds (a short blink).
 leds.set(0, 0) # Turn off the LED (making it blink off).
 sleep(0.2) # Pause for 0.2 seconds before the next blink.

 # Check if button B0 has been pressed
 if buttons.was_pressed(BTN_0): # True if button B0 was pressed
 break # Exit the inner loop if button B0 is pressed, which means the drone is now "armed".

 # Code to run when the drone is "armed" (after the first button press)
 pixels.fill(YELLOW) # Set all pixel LEDs to yellow as a warning that the drone is armed.

 # Another loop to wait for the second button press to either "CONFIRM" (takeoff) or "DISARM"
 while True:
 # Blink the LED near button B1 to indicate the drone is armed and waiting for confirmation.
 leds.set(7, 50) # Turn on the LED near B1 at brightness 5 0.
 sleep(0.1) # Pause for 0.1 seconds.
 leds.set(7, 0) # Turn off the LED, making it blink off.
 sleep(0.2) # Pause for 0.2 seconds before the next blink.

 # Check if button B0 is pressed again to disarm the drone.
 if buttons.was_pressed(BTN_0): # True if button B0 was pressed again.
 break # Exit the inner loop if button B0 is pressed again, disarming the drone.

 # Code to run when the drone is disarmed (after the second button press)
 pixels.off() # Turn off all the pixel LEDs to show the drone is no longer armed.

Turn all the pixels off, the easy way!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 33 of 104

Goal:

Run and test the code from the CodeTrek. Arm and Disarm your drone!

Tools Found: Speaker, RGB "pixel" LEDs, Buttons, Loops, BYTE LEDs, bool, Branching, Indentation, Break and Continue

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 while True:
 5
 6 # Wait for first "ARM" button press
 7 while True:
 8 # Blink
 9 leds.set(0, 50) # LED near B0
10 sleep(0.1)
11 leds.set(0, 0)
12 sleep(0.2)
13
14 if buttons.was_pressed(BTN_0):
15 break
16
17 # Armed!
18 pixels.fill(YELLOW)
19
20 # Wait for second "CONFIRM" or "DISARM" button press
21 while True:
22 # Blink
23 leds.set(7, 50) # LED near B1
24 sleep(0.1)
25 leds.set(7, 0)
26 sleep(0.2)
27
28 if buttons.was_pressed(BTN_0):
29 # Disarm
30 break
31
32 # Disarmed
33 pixels.off()
34

Objective 2 - Debounce

Debouncing the Button
You have encountered a classic electronics and robotics problem.

At a microscopic level, the metal contacts of a button or switch often bounce a few times before coming to rest. So you might
detect two or more bounces depending on how fast you're checking!
Ah yes, engineers had to deal with this even before I was born!

You will solve this problem with code! But first, a bit more about the button functions.

Concept: was_pressed() Back Story

Consider how buttons.was_pressed(BTN_0) works. It actually does two things:

1. Return True if a button has been pressed.
Button presses are monitored by a CPU interrupt handler.

2. Reset the internal status of the button to False.
It won't return True unless the button is pressed again after the last was_pressed(BTN_0).

Bad Bounce!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 34 of 104

When the button bounces, here's the sequence:

1. User presses button... now in slooow moootiiooon...
2. First Contact!
3. was_pressed(BTN_0) → True # we detected the first press!
4. It's all good. The internal status of the button is reset to False.
5. Bounce!!
6. The CPU interrupt handler saves the was_pressed status.

Oh No! ...Next time around the loop when we call was_pressed(BTN_0) it will remember this
bounce :-(

Concept: Debounce

Debouncing a button is quite easy:

1. Detect a button press
2. Delay long enough for the bouncing contacts to settle down.
3. Reset internal button press status.

You can use sleep(0.1) for step 2. But what about step 3?

How do you do you reset the internal button press status?

Easy! Just call buttons.was_pressed(BTN_0) again.

It really doesn't matter whether it returns True or False.
The important thing is that was_pressed() resets the internal status.

Check the 'Trek!

Run It!

Test a few runs, and you'll notice the button presses are spot-on!

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 # Repeat this test program forever
 5 while True:
 6
 7 # Wait for first "ARM" button press
 8 while True:
 9 # Blink
10 leds.set(0, 50) # LED near B0
11 sleep(0.1)
12 leds.set(0, 0)
13 sleep(0.2)
14
15 if buttons.was_pressed(BTN_0):
16 break
17
18 # Armed!
19 pixels.fill(YELLOW)
20
21 # Debounce

Debounce Here

Just add these two sweet lines of Python code! Remember, no need to type in my comments.

Debounce
sleep(0.1) # Wait for bouncing to stop

Fly with Python Mission Content

©2025 Firia Labs Appendix A 35 of 104

22
23 # Wait for second "CONFIRM" or "DISARM" button press
24 while True:
25 # Blink
26 leds.set(7, 50) # LED near B1
27 sleep(0.1)
28 leds.set(7, 0)
29 sleep(0.2)
30
31 if buttons.was_pressed(BTN_0):
32 break # Disarm
33
34 # Disarmed
35 pixels.off()
36
37 # Debounce

38

Goal:

Modify your code to eliminate the "double-press" bug.

No more contact-bounce!

Tools Found: Buttons, CPU and Peripherals, Comments

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 # Repeat this test program forever
 5 while True:
 6
 7 # Wait for first "ARM" button press
 8 while True:
 9 # Blink
10 leds.set(0, 50) # LED near B0
11 sleep(0.1)
12 leds.set(0, 0)
13 sleep(0.2)
14
15 if buttons.was_pressed(BTN_0):
16 break
17
18 # Armed!
19 pixels.fill(YELLOW)
20
21 # Debounce
22 sleep(0.1)
23 buttons.was_pressed()
24
25 # Wait for second "CONFIRM" or "DISARM" button press
26 while True:
27 # Blink
28 leds.set(7, 50) # LED near B1

buttons.was_pressed() # Clear internal state

Note:

Above I used buttons.was_pressed() without specifying BTN_0. That's not a mistake!

When you call it this way it reads BOTH buttons at once.
That will be helpful later when you're checking B1 also.

Debounce Here

You guessed it. Just like before!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 36 of 104

29 sleep(0.1)
30 leds.set(7, 0)
31 sleep(0.2)
32
33 if buttons.was_pressed(BTN_0):
34 break # Disarm
35
36 # Disarmed
37 pixels.off()
38
39 # Debounce
40 sleep(0.1)
41 buttons.was_pressed()
42

Quiz 1 - Buttons!

Question 1: What does the break statement do?

done Breaks out of a loop

close Causes the code to stop

close Jumps over the next line of code

close Crashes the program

Question 2: What command checks to see if B0 was pressed?

done buttons.was_pressed(BTN_0)

close buttons.is_pressed(B0)

close buttons(BTN_0, pressed)

close buttons.pressed(B0)

Question 3: What is the purpose of the code:

while True:
 if buttons.was_pressed(BTN_0):
 break

done Pause the code until B0 is pressed.

close Pause the code when B0 is pressed.

close End the program when B0 is pressed.

close Loops the button press continuously.

Question 4: What code will debounce a button?

done `ERROR: Invalid Code Block!! sleep(0.1) buttons.was_pressed()

ERROR: Invalid Code Block!!

close `ERROR: Invalid Code Block!! while True: if buttons.was_pressed(BTN_0): break

ERROR: Invalid Code Block!!

close buttons.debounce(BTN_0)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 37 of 104

close buttons.was_pressed() = False

Objective 3 - Countdown

Countdown to Launch
Now that you have the ARM process all sorted, it's time to add button B1 to
confirm the LAUNCH.

Once it is confirmed, sound a warning alert using the speaker.
Also flash the pixel LEDs RED so the user knows to STAND CLEAR!

Check the 'Trek!

You'll be adding another if condition: with a button check for B1.

Oh, and this is where you add sounds and an awesome WARNING
countdown!
The additional code should be pretty familiar to you by now.

Run It!

This is getting exciting!

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 # Repeat this test program forever
 5 while True:
 6
 7 # Wait for first "ARM" button press
 8 while True:
 9 # Blink
10 leds.set(0, 50) # LED near B0
11 sleep(0.1)
12 leds.set(0, 0)
13 sleep(0.2)
14
15 if buttons.was_pressed(BTN_0):
16 break
17
18 # Armed!
19 pixels.fill(YELLOW)
20 speaker.beep(??, 100) # TODO: fill in frequency
21 speaker.beep(??, 50) # TODO: fill in frequency

22
23 # Debounce
24 sleep(0.1)
25 buttons.was_pressed()
26
27 # Wait for second "CONFIRM" or "DISARM" button press
28 while True:
29 # Blink

All About the UX

User experience, that is.

Add a little 2-tone confirmation beep to give the user some audible
feedback after arming.
You need to choose the frequencies of the two beeps!

Might I suggest 500Hz and 1000 Hz?

Fly with Python Mission Content

©2025 Firia Labs Appendix A 38 of 104

30 leds.set(7, 50) # LED near B1
31 sleep(0.1)
32 leds.set(7, 0)
33 sleep(0.2)
34
35 if buttons.was_pressed(BTN_0):
36 break # Disarm
37
38 elif buttons.was_pressed(BTN_1):
39 # Confirmed! Start countdown...

40 for i in range(4):
41 pixels.off()
42 sleep(0.5)
43 pixels.fill(RED)
44 # TODO: beep at 800Hz for 500ms

45
46 # Launch!
47 break

48
49 # Disarmed
50 pixels.off()
51
52 # Debounce
53 sleep(0.1)
54 buttons.was_pressed()
55

Goals:

Add the elif statement and countdown for loop.

Add a double-beep on ARM, and warning beep prior to launch.

Tools Found: Buttons, Speaker, RGB "pixel" LEDs, Branching, Loops, Variables

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 # Repeat this test program forever
 5 while True:
 6

Add the check for BTN_1

Notice this looks a lot like the if check for BTN_0.

But here it's elif - short for "else if".
Check the branching tool for more details on that.

The Countdown!

A neat little for loop.

In this case, you just need to flash and beep four times.
The variable i keeps track of the count 0, 1, 2, 3 (but otherwise you aren't using it!)

TODO!

You need to add a speaker.beep(800, 500) here.

Here's where you will add the motor spin-up code in the next Objective!

For now after the countdown your code just hits the break statement, going back to the top: disarmed and waiting.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 39 of 104

 7 # Wait for first "ARM" button press
 8 while True:
 9 # Blink
10 leds.set(0, 50) # LED near B0
11 sleep(0.1)
12 leds.set(0, 0)
13 sleep(0.2)
14
15 if buttons.was_pressed(BTN_0):
16 break
17
18 # Armed!
19 pixels.fill(YELLOW)
20 speaker.beep(500, 100)
21 speaker.beep(1000, 50)
22
23 # Debounce
24 sleep(0.1)
25 buttons.was_pressed()
26
27 # Wait for second "CONFIRM" or "DISARM" button press
28 while True:
29 # Blink
30 leds.set(7, 50) # LED near B1
31 sleep(0.1)
32 leds.set(7, 0)
33 sleep(0.2)
34
35 if buttons.was_pressed(BTN_0):
36 break # Disarm
37
38 elif buttons.was_pressed(BTN_1):
39 # Confirmed! Start countdown...
40 for i in range(4):
41 pixels.off()
42 sleep(0.5)
43 pixels.fill(RED)
44 speaker.beep(800, 500)
45
46 # Launch!
47
48 break
49
50 # Disarmed
51 pixels.off()
52
53 # Debounce
54 sleep(0.1)
55 buttons.was_pressed()
56

Objective 4 - Motor Test

Motor Test
With the safety interlocks fully in place and tested, it's time to spin up
those motors!

This step will only be at "test speed", so you can first confirm
motor operation without taking off into the air.

Test Spin!!
The flight module has a motor_test() function that's perfect for this
kind of testing. The motors will spin-up, but not fast enough to lift off :-)

Check the 'Trek!

A new flight module is joining the party.

You'll learn a lot about that module in future Missions!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 40 of 104

Run It!

It's all coming together now. The safety code makes this a breeze!

warningwarning Note: The battery must be connected to run the motors! warningwarning

Physical Interaction: Watch Your Fingers

Investigate the motors as they run!

Can you confirm the thrust is all downward?
Are the propellers spinning the same direction? Check the toolbox to see why not!

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3 from flight import *

 4
 5 # Repeat this test program forever
 6 while True:
 7
 8 # Wait for first "ARM" button press
 9 while True:
10 # Blink
11 leds.set(0, 50) # LED near B0
12 sleep(0.1)
13 leds.set(0, 0)
14 sleep(0.2)
15
16 if buttons.was_pressed(BTN_0):
17 break
18
19 # Armed!
20 pixels.fill(YELLOW)
21 speaker.beep(500, 100)
22 speaker.beep(1000, 50)
23
24 # Debounce
25 sleep(0.1)
26 buttons.was_pressed()
27
28 # Wait for second "CONFIRM" or "DISARM" button press
29 while True:
30 # Blink
31 leds.set(7, 50) # LED near B1
32 sleep(0.1)
33 leds.set(7, 0)
34 sleep(0.2)
35
36 if buttons.was_pressed(BTN_0):
37 break # Disarm
38
39 elif buttons.was_pressed(BTN_1):
40 # Confirmed! Start countdown...
41 for i in range(4):
42 pixels.off()
43 sleep(0.5)
44 pixels.fill(RED)
45 speaker.beep(800, 500)
46
47 # Launch!
48 pixels.fill(GREEN)

import everything from the flight module.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 41 of 104

49 motor_test(True)
50 sleep(3)
51 motor_test(False)
52 break

53
54 # Disarmed
55 pixels.off()
56
57 # Debounce
58 sleep(0.1)
59 buttons.was_pressed()
60

Goals:

Import the flight module.

Run the code and test those motors!

Tools Found: Motors and Props, Flight Module, Functions, import, RGB "pixel" LEDs

Solution:

 1 from codeair import *
 2 from time import sleep
 3 from flight import *
 4
 5 # Repeat this test program forever
 6 while True:
 7
 8 # Wait for first "ARM" button press
 9 while True:
10 # Blink
11 leds.set(0, 50) # LED near B0
12 sleep(0.1)
13 leds.set(0, 0)
14 sleep(0.2)
15
16 if buttons.was_pressed(BTN_0):
17 break
18
19 # Armed!
20 pixels.fill(YELLOW)
21 speaker.beep(500, 100)
22 speaker.beep(1000, 50)
23
24 # Debounce
25 sleep(0.1)
26 buttons.was_pressed()
27
28 # Wait for second "CONFIRM" or "DISARM" button press
29 while True:
30 # Blink
31 leds.set(7, 50) # LED near B1
32 sleep(0.1)
33 leds.set(7, 0)
34 sleep(0.2)
35
36 if buttons.was_pressed(BTN_0):
37 break # Disarm
38
39 elif buttons.was_pressed(BTN_1):
40 # Confirmed! Start countdown...

Motor Test

This will run the motors for 3 seconds.

And fill the pixel LEDs with GREEN while they run.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 42 of 104

41 for i in range(4):
42 pixels.off()
43 sleep(0.5)
44 pixels.fill(RED)
45 speaker.beep(800, 500)
46
47 # Launch!
48 pixels.fill(GREEN)
49 motor_test(True)
50 sleep(3)
51 motor_test(False)
52 break
53
54 # Disarmed
55 pixels.off()
56
57 # Debounce
58 sleep(0.1)
59 buttons.was_pressed()
60

Objective 5 - Functions

Custom Tools
The safety check you have developed in this Mission is a very useful tool.

When might it be useful?
Any time you want to let the user start up the drone with a button-press!

Software Engineering
Making "reusable components" is a major goal of Software Engineering.

Consider your "Button Arm" code. You wouldn't want to have to start over and write that from scratch every time you needed it!
As you've seen, it takes effort to get the code just right.

First Steps to Reusability
You've already experienced Python's reusability features:

When you from codeair import * you're re-using a Python module that contains code for buttons, leds, and more!
You are using functions like motor_test() and sleep(). Those are just chunks of code someone else wrote, so you don't have
to!

Concept: Functions

When you write some code that you'd like to use over and over again, you should put it in a function.

Here's how you would define a function that returns 0 for BTN_0, and 1 for BTN_1. Say you decide to name the new
function any_button() :

def any_button():
 if buttons.was_pressed(BTN_0):
 return 0
 elif buttons.was_pressed(BTN_1):
 return 1

Once it's defined, you can call the function whenever needed:

if any_button() == 1:
 # Action when BTN_1 is pressed

Your First Function
The "Button Arm" code will be an excellent function to use whenever you need a safe way to start flying.

You are going to need this function later!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 43 of 104

Check the 'Trek!

The CodeTrek will show you a few small changes to package your code into a function.

AFTER the function is defined you can call it as part of your motor test!

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3 from flight import *
 4
 5 def button_arm():
 6 do_launch = False

 7
 8 # Wait for first "ARM" button press
 9 while True:
10 # Blink
11 leds.set(0, 50) # LED near B0
12 sleep(0.1)
13 leds.set(0, 0)
14 sleep(0.2)
15
16 if buttons.was_pressed(BTN_0):
17 break
18
19 # Armed!
20 pixels.fill(YELLOW)
21 speaker.beep(500, 100)
22 speaker.beep(1000, 50)
23
24 # Debounce
25 sleep(0.1)
26 buttons.was_pressed()
27
28 # Wait for second "CONFIRM" or "DISARM" button press
29 while True:
30 # Blink
31 leds.set(7, 50) # LED near B1
32 sleep(0.1)
33 leds.set(7, 0)
34 sleep(0.2)
35
36 if buttons.was_pressed(BTN_0):
37 break # Disarm
38
39 elif buttons.was_pressed(BTN_1):
40 # Confirmed! Start countdown...
41 for i in range(4):
42 pixels.off()
43 sleep(0.5)
44 pixels.fill(RED)
45 speaker.beep(800, 500)
46
47 # Launch!
48 do_launch = True
49 break

1. Replace your while loop with a function def.

2. Add a do_launch variable, and initialize it to False. You'll set this to True below if the user confirms with B1.

User confirmed launch!

1. Cut your motor test code, and paste it at the bottom of the file.
2. Replace it with do_launch = True as shown here.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 44 of 104

50
51 # Disarmed
52 pixels.off()
53
54 # Debounce
55 sleep(0.1)
56 buttons.was_pressed()
57
58 return do_launch

59
60 # Now that the function is defined, here's the test program:
61 while True:
62 if button_arm():
63 pixels.fill(GREEN)
64 motor_test(True)
65 sleep(3)
66 motor_test(False)

67 pixels.off()
68

Goals:

Convert your big while loop to a reusable function called button_arm().

After defining your new function, call it from a test program:

A while loop that uses button_arm() to check for launch confirmation.

...and spins up those motors!

Tools Found: import, Functions, Parameters, Arguments, and Returns, Loops, Motors and Props, Variables, Indentation

Solution:

 1 from codeair import *
 2 from time import sleep
 3 from flight import *
 4
 5 def button_arm():
 6 do_launch = False
 7
 8 # Wait for first "ARM" button press
 9 while True:
10 # Blink
11 leds.set(0, 50) # LED near B0
12 sleep(0.1)
13 leds.set(0, 0)
14 sleep(0.2)
15
16 if buttons.was_pressed(BTN_0):
17 break
18
19 # Armed!
20 pixels.fill(YELLOW)
21 speaker.beep(500, 100)

The last thing your new function does is return a value.

In this case, True means CONFIRMED and False means DISARMED.

Test Program

Notice, you are now OUTSIDE the function!

Check the indentation to be sure.

Just a simple loop, checking whether button_arm() is True or not.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 45 of 104

22 speaker.beep(1000, 50)
23
24 # Debounce
25 sleep(0.1)
26 buttons.was_pressed()
27
28 # Wait for second "CONFIRM" or "DISARM" button press
29 while True:
30 # Blink
31 leds.set(7, 50) # LED near B1
32 sleep(0.1)
33 leds.set(7, 0)
34 sleep(0.2)
35
36 if buttons.was_pressed(BTN_0):
37 break # Disarm
38
39 elif buttons.was_pressed(BTN_1):
40 # Confirmed! Start countdown...
41 for i in range(4):
42 pixels.off()
43 sleep(0.5)
44 pixels.fill(RED)
45 speaker.beep(800, 500)
46
47 # Launch!
48 do_launch = True
49 break
50
51 # Disarmed
52 pixels.off()
53
54 # Debounce
55 sleep(0.1)
56 buttons.was_pressed()
57
58 return do_launch
59
60 # Now that the function is defined, here's the test program:
61 while True:
62 if button_arm():
63 pixels.fill(GREEN)
64 motor_test(True)
65 sleep(3)
66 motor_test(False)
67 pixels.off()
68

Quiz 2 - Default Quiz

Question 1: What is printed?

x = 5
if x < 5:
 print('Hello')
elif x > 5:
 print('World')

done Nothing is printed

close Hello

close World

close Hello World

Question 2: What does == mean in if choice == 1?

done Returns True if choice is the same as 1

Fly with Python Mission Content

©2025 Firia Labs Appendix A 46 of 104

close Assigns 1 to the variable choice

close Selects either choice or 1

close It causes an error

Question 3: What line of code will call this function?

def any_button():
 if buttons.was_pressed(BTN_0):
 return 0
 elif buttons.was_pressed(BTN_1):
 return 1

done if any_button() == 1:

close any_button()

close call any_button()

close def any_button():

Question 4: What will be printed if B1 is pressed:

def any_button():
 if buttons.was_pressed(BTN_0):
 return 0
 elif buttons.was_pressed(BTN_1):
 return 1

if any_button() == 0:
 print('Hello')
else:
 print('World')

done World

close Hello

close 1

close Nothing will be printed

Objective 6 - Torque

Quadcopter Physics
One more bit of quadcopter physics you need to understand before we go further.

Watch the propellers carefully just as they stop, and you'll notice something interesting.
The BLACK propellers rotate clockwise (CW)
The RED propellers rotate counterclockwise (CCW)

This is critical to the flight of these machines, but why?

Concept: Torque

A rotational force, which is what your motors produce, is called Torque.

And when you produce torque in one direction, there is naturally an opposing force in the opposite direction.

If you were on skates and spinning a big propeller over your head, your body would spin the other direction.
And when a power drill bit spins up, you have to hold tight to keep the handle from rotating the opposite direction!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 47 of 104

Newton's 3rd Law
Check out the toolbox motors entry for more information on the forces at play here.

The bottom line is: two of the propellers need to rotate the opposite direction!
By doing this, the forces cancel-out. You must bring balance to the force!

Prove It!
It's said that if all the propellers went the same direction, the drone would just rotate uncontrollably in the opposite direction.

Can you prove that, with a ground-based test?
A short pulse of the right two propellers should make the drone rotate briefly in the opposite direction, right?

warningwarning Warning: Grown Up Motor Tests! warningwarning
CodeAIR is designed to put YOU in full control. I'm trusting you here.
In case you're wondering: YES, you could set the motor speed much higher and it would likely spin uncontrollably into the air.

Please don't do that! Be responsible with your drone, and safe with yourself and fellow humans.

Check the 'Trek!

The CodeTrek shows how to replace your motor test with a "torque test" that uses the low-level parameter system of the
flight module to enable just the two RED (CCW) motors briefly.

Physical Interaction: Slippery Slope

After you've loaded and tested this code, unplug the USB and place it on a very smooth desk or other surface.

Can you see the how the body of CodeAIR rotates?
Was Newton right about the "opposite" direction of the force?

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3 from flight import *
 4
 5 def button_arm():
 6 do_launch = False
 7
 8 # Wait for first "ARM" button press
 9 while True:
10 # Blink
11 leds.set(0, 50) # LED near B0
12 sleep(0.1)
13 leds.set(0, 0)
14 sleep(0.2)
15
16 if buttons.was_pressed(BTN_0):
17 break
18
19 # Armed!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 48 of 104

20 pixels.fill(YELLOW)
21 speaker.beep(500, 100)
22 speaker.beep(1000, 50)
23
24 # Debounce
25 sleep(0.1)
26 buttons.was_pressed()
27
28 # Wait for second "CONFIRM" or "DISARM" button press
29 while True:
30 # Blink
31 leds.set(7, 50) # LED near B1
32 sleep(0.1)
33 leds.set(7, 0)
34 sleep(0.2)
35
36 if buttons.was_pressed(BTN_0):
37 break # Disarm
38
39 elif buttons.was_pressed(BTN_1):
40 # Confirmed! Start countdown...
41 for i in range(4):
42 pixels.off()
43 sleep(0.5)
44 pixels.fill(RED)
45 speaker.beep(800, 500)
46
47 # Launch!
48 do_launch = True
49 break
50
51 # Disarmed
52 pixels.off()
53
54 # Debounce
55 sleep(0.1)
56 buttons.was_pressed()
57
58 return do_launch
59
60 # Now that the function is defined, here's the test program:
61 while True:
62 if button_arm():
63 pixels.fill(GREEN)
64 # BRIEF pulse of RED (CCW) motors
65 set_param('motorPowerSet.m2', 30000)
66 set_param('motorPowerSet.m3', 30000)
67 set_param('motorPowerSet.enable', 1)
68 sleep(0.2)
69 set_param('motorPowerSet.enable', 0)
70 pixels.off()

71

Goal:

Modify your code to run the Torque test!

Use the set_param() functions as shown in the CodeTrek

Tools Found: Motors and Props, Flight Module

Motor Pulse

Copy and paste this code, replacing your motor test between pixels.fill(GREEN) and pixels.off().

 # BRIEF pulse of RED (CCW) motors
 set_param('motorPowerSet.m2', 30000)
 set_param('motorPowerSet.m3', 30000)
 set_param('motorPowerSet.enable', 1)
 sleep(0.2)
 set_param('motorPowerSet.enable', 0)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 49 of 104

Solution:

 1 from codeair import *
 2 from time import sleep
 3 from flight import *
 4
 5 def button_arm():
 6 do_launch = False
 7
 8 # Wait for first "ARM" button press
 9 while True:
10 # Blink
11 leds.set(0, 50) # LED near B0
12 sleep(0.1)
13 leds.set(0, 0)
14 sleep(0.2)
15
16 if buttons.was_pressed(BTN_0):
17 break
18
19 # Armed!
20 pixels.fill(YELLOW)
21 speaker.beep(500, 100)
22 speaker.beep(1000, 50)
23
24 # Debounce
25 sleep(0.1)
26 buttons.was_pressed()
27
28 # Wait for second "CONFIRM" or "DISARM" button press
29 while True:
30 # Blink
31 leds.set(7, 50) # LED near B1
32 sleep(0.1)
33 leds.set(7, 0)
34 sleep(0.2)
35
36 if buttons.was_pressed(BTN_0):
37 break # Disarm
38
39 elif buttons.was_pressed(BTN_1):
40 # Confirmed! Start countdown...
41 for i in range(4):
42 pixels.off()
43 sleep(0.5)
44 pixels.fill(RED)
45 speaker.beep(800, 500)
46
47 # Launch!
48 do_launch = True
49 break
50
51 # Disarmed
52 pixels.off()
53
54 # Debounce
55 sleep(0.1)
56 buttons.was_pressed()
57
58 return do_launch
59
60 # Now that the function is defined, here's the test program:
61 while True:
62 if button_arm():
63 pixels.fill(GREEN)
64 # BRIEF pulse of RED (CCW) motors
65 set_param('motorPowerSet.m2', 30000)
66 set_param('motorPowerSet.m3', 30000)
67 set_param('motorPowerSet.enable', 1)
68 sleep(0.2)
69 set_param('motorPowerSet.enable', 0)
70 pixels.off()
71
72

Fly with Python Mission Content

©2025 Firia Labs Appendix A 50 of 104

Mission 4 Complete

Safety Protocol Complete
Nice Work!

You now have startup code you can use for future Missions.
You've learned about the risks, and how to safely operate CodeAIR.
And you have a hands-on understanding of the quadcopter power plant!
What's more, your Python coding skills have grown immensely!

Be Safe Out There

Safe flying is your responsibility!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 51 of 104

Mission 5 - Hovering Flight

Take Flight
In this Mission you'll get CodeAIR flying, and begin your journey into the world of Sensor-Based
Navigation.

Standing on the Shoulders of Code

You will begin by learning about custom modules - taking the work you did in the last Mission
building a launch safety system and putting it to good use!

You'll end by mastering an Escape Room challenge, where CodeAIR must use its FORWARD
laser ranger to avoid walls and seek the exit.

Mission Targets

There's much to cover in this Mission -

Using console output print() statement in Python.
Flying with the MotionCommander interface.
Blocking versus Non-Blocking functions.
Measuring precise distances with CodeAIR's laser rangers.
Working with variables in Python.
...and much more!

Objective 1 - Modular

Defying Gravity!
It's time to get this thing off the ground.

But, you surely know by now, there is gonna be some coding
involved!
At right is a classic Python meme from XKCD: import antigravity
Python makes it so simple!

Alas, there's no antigravity module here. But you do have another
important import to attend to.

Importing the Safety Protocol
First off, do you still have your safety.py code handy?

Rather than adding to that, how about making it a module?
Then you can import it whenever you need it!

Concept: Custom Modules

Creating a Python module can be as simple as placing a code file like "foo.py" in the same folder as your program, and then
just typing import foo.

Notice, you don't need the file extension (.py) in the import statement.

So if you already have a file called "safety.py" loaded on CodeAIR[1] you can write import safety and use the functions
defined therein.

1. CodeSpace will automatically keep files named with the .py extension loaded on CodeAIR.

File → Open "safety.py"
Open up your safety.py program, if it's not already open.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 52 of 104

If for some reason you don't have the file, I've provided it below to copy.
You will need to edit your version to remove the test code after the function. Otherwise the test code will run when you import
it, which is definitely not what you want!
For more details on custom modules check the emoji_objectsHints.

Check the 'Trek!

There are a couple of small changes you need to make to your safety.py program, to be sure it's a nice, well-behaved
module.

Open the menu Console
See that "hamburger" icon at the bottom right of your window?

Gimme dat! ...I'm jokin'
But seriously, click the menu Console icon to open a window so you can see print() output from your Python program.
While CodeAIR is connected via USB, your code can print() messages there!

Run It!

To "install" this module, you'll need to click the play_arrow RUN button.

When you do so, check the menu Console to see the "Loaded..." message.

CodeTrek:

 1 """Safety Module - provide functions for safe CodeAIR operation."""
 2 from codeair import *

 3 from time import sleep
 4 from flight import *
 5
 6 def button_arm():
 7 do_launch = False
 8
 9 # Wait for first "ARM" button press
10 while True:
11 # Blink
12 leds.set(0, 50) # LED near B0
13 sleep(0.1)
14 leds.set(0, 0)
15 sleep(0.2)
16
17 if buttons.was_pressed(BTN_0):
18 break
19
20 # Armed!
21 pixels.fill(YELLOW)
22 speaker.beep(500, 100)
23 speaker.beep(1000, 50)
24
25 # Debounce
26 sleep(0.1)
27 buttons.was_pressed()
28
29 # Wait for second "CONFIRM" or "DISARM" button press
30 while True:
31 # Blink

A fresh copy of "safety.py" if needed

A documentation string ("docstring") at the top of the file.

Related to comments, these strings don't affect how your program runs, but they
are essential for folks trying to understand your code later!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 53 of 104

32 leds.set(7, 50) # LED near B1
33 sleep(0.1)
34 leds.set(7, 0)
35 sleep(0.2)
36
37 if buttons.was_pressed(BTN_0):
38 break # Disarm
39
40 elif buttons.was_pressed(BTN_1):
41 # Confirmed! Start countdown...
42 for i in range(4):
43 pixels.off()
44 sleep(0.5)
45 pixels.fill(RED)
46 speaker.beep(800, 500)
47
48 # Launch!
49 do_launch = True
50 break
51
52 # Disarmed
53 pixels.off()
54
55 # Debounce
56 sleep(0.1)
57 buttons.was_pressed()
58
59 return do_launch
60
61 # Print to console if running standalone
62 if __name__ == '__main__':
63 print("Loaded safety.py")
64

Hints:

Custom Modules

In Python, importing a file as a module is like telling your program to use code from another file. Think of it as borrowing
functions or settings from a "helper file" that you can use in your main program. Here's how it works:

1. Creating a Module: If you want to create a module, you just need to write your Python code in a separate file (let’s say
you name it "tools.py") and save it in the same folder as your main program. This file can contain any Python code you
want to reuse, like functions or variables.

2. Using the Module: Once you have your "tools.py" file ready, you can bring its contents into your main program by typing
import tools. This tells Python to load everything in "tools.py" so you can use it in your program. For example, if "tools.py"
has a function called measure_distance, after you import it, you can use it by writing tools.measure_distance() in your main
code.

3. No File Extension Needed in Import: When importing, you only need the file name without the .py extension. For
instance, if your file is named "safety.py," you would import it by writing import safety — not import safety.py.

4. Loading Files onto CodeAIR: In CodeSpace, any .py file that you RUN will automatically be retained in CodeAIR’s flash
filesystem. This means that any programs you have run with a .py extension will be ready for import by future programs.

This setup allows you to keep your code organized by separating reusable pieces into different files, making it easier to manage
and reuse them in different programs.

Loading Files on CodeAIR

As mentioned in the Objective overview, the simple act of running a file named with the standard .py extension will signal
CodeSpace that the file should be persisted on the CodeAIR filesystem.

1. Remove the test code at the bottom of the file.

2. Add this strange if statement. This will print() a message to the console
when you first RUN the module on CodeAIR.

The condition __name__ == '__main__' will be True when this program (safety.py) is running
as the "main" program on CodeAIR. That will not be the case when you import it from other programs!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 54 of 104

If you open your OS file browser, and view the "flash drive" that appears when CodeAIR is connected, you will see the files
which have been loaded in this way.

The currently loaded "main program" - the one that runs when CodeAIR boots up - will be called "main.py", regardless of
what it is named in CodeSpace!

If you named it with a .py extension in CodeSpace, it will ALSO be saved to CodeAIR by its proper Python filename,
making it available for later import.

Note:

When you view the filesystem with your OS file browser, it often won't immediately show files which have been written by
Python or CodeSpace via WebUSB.

Computers don't really expect flash drives to write themselves!

Unplug CodeAIR, reconnect, refresh,... the files are there.

You can also load files outside of CodeSpace. More information on that here:

Working with files

Goal:

Run the "safety.py" program to install it onto CodeAIR.

I'm looking for "Loaded safety.py" on the console!

Tools Found: import, Functions, Print Function, Motors and Props, Comments, bool

Solution:

 1 """Safety Module - provide functions for safe CodeAIR operation."""
 2 from codeair import *
 3 from time import sleep
 4 from flight import *
 5
 6 def button_arm():
 7 do_launch = False
 8
 9 # Wait for first "ARM" button press
10 while True:
11 # Blink
12 leds.set(0, 50) # LED near B0
13 sleep(0.1)
14 leds.set(0, 0)
15 sleep(0.2)
16
17 if buttons.was_pressed(BTN_0):
18 break
19
20 # Armed!
21 pixels.fill(YELLOW)
22 speaker.beep(500, 100)
23 speaker.beep(1000, 50)
24
25 # Debounce
26 sleep(0.1)
27 buttons.was_pressed()
28
29 # Wait for second "CONFIRM" or "DISARM" button press
30 while True:
31 # Blink
32 leds.set(7, 50) # LED near B1
33 sleep(0.1)
34 leds.set(7, 0)
35 sleep(0.2)
36
37 if buttons.was_pressed(BTN_0):
38 break # Disarm
39

Fly with Python Mission Content

©2025 Firia Labs Appendix A 55 of 104

https://docs.firialabs.com/codeair/WorkingWithFiles.html

40 elif buttons.was_pressed(BTN_1):
41 # Confirmed! Start countdown...
42 for i in range(4):
43 pixels.off()
44 sleep(0.5)
45 pixels.fill(RED)
46 speaker.beep(800, 500)
47
48 # Launch!
49 do_launch = True
50 break
51
52 # Disarmed
53 pixels.off()
54
55 # Debounce
56 sleep(0.1)
57 buttons.was_pressed()
58
59 return do_launch
60
61 # Print to console if running standalone
62 if __name__ == '__main__':
63 print("Loaded safety.py")
64

Objective 2 - Hover

Hover!
With your safety code in place, it's time to take flight!

You are going to be amazed at how simple the code is now.

Flight Sensors
CodeAIR uses sensors for autonomous flight.

For altitude, a pressure sensor and laser rangers are used.
For tracking and holding position, an optical flow sensor is used.

Air Space
For best results when flying, be sure to have:

Good lighting - nice bright room lighting, no harsh shadows.
Floor space - take off from floor, with no obstacles within a 1 meter radius.

Make sure the floor your drone flies over has some "pattern" so the flow sensor can maintain a stable horizontal position. (refer to
the toolbox for more details)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 56 of 104

Concept: Motion Commander

The flight module provides the fly object, exposing a high-level flight control interface called MotionCommander.

Behind the scenes, MotionCommander sends velocity setpoints to CodeAIR's flight controller, and it uses its sensors to try
to maintain stable flight while executing commands like:

fly.take_off(height_meters)
fly.steady(seconds)
fly.turn_right(degrees)
fly.land()

Note:

There is no sleep() allowed while flying!

The fly.steady() function allows your code to pause while keeping the flight controller
running.

Create a New File!

Use the File → New File menu to create a new file called Hover.

Check the 'Trek!

Run It!

Make a few test flights...

CodeTrek:

 1 from codeair import *
 2 from flight import *
 3 from safety import *

 4
 5 # Repeat the flight test
 6 while True:
 7
 8 # Safety-check button press
 9 if button_arm():
10 # Begin flight!
11 pixels.fill(GREEN)

12 fly.take_off(1.0)
13 pixels.fill(BLUE)
14 fly.steady(3.0)
15 pixels.fill(YELLOW)
16 fly.land()
17 pixels.off()

Import your shiny new module!

This assume, of course, that you loaded "safety.py" onto CodeAIR in the last Objective.

It Begins!

If the code reaches this line, it means button_arm() returned True.

That means the user has armed AND confirmed launch.
(And hopefully they're standing clear!)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 57 of 104

18

Goals:

Run the Hover code, calling fly.take_off() and fly.land().

Use your new safety module in an import.

Tools
Found:

Barometric Pressure Sensor, Laser Range Sensors, Optical Flow Sensor, Flight Module, MotionCommander Flight Interface, import,
Parameters, Arguments, and Returns, RGB "pixel" LEDs

Solution:

 1 from codeair import *
 2 from flight import *
 3 from safety import *
 4
 5 # Repeat the flight test
 6 while True:
 7
 8 # Safety-check button press
 9 if button_arm():
10 # Begin flight!
11 pixels.fill(GREEN)
12 fly.take_off(1.0)
13 pixels.fill(BLUE)
14 fly.steady(3.0)
15 pixels.fill(YELLOW)
16 fly.land()
17 pixels.off()
18

Objective 3 - Moving Forward

Moving Forward
You're flying now! Ready to build on what you've learned?

Oh, but before you move forward, there's something you should know.
To start with you'll only be using the blocking subset of MotionCommander.

Concept: Blocking vs. Non-Blocking Functions

What does "blocking" mean?

Functions that block your code from continuing until they finish are
called blocking functions.
sleep(seconds) is a classic blocking function. Your code can't continue
until it finishes.
The MotionCommander functions you used for hovering are
blocking.

But there are also a set of non-blocking functions in MotionCommander.

The Whole Shebang

This is the whole "hover" program.

Notice the pixel LEDs are used to show which stage of flight your code is in.
So just three MotionCommander commands:

fly.take_off(1.0) # ascend to 1 meter altitude
fly.steady(3.0) # hover for 3 seconds
fly.land() # descend to the floor

Fly with Python Mission Content

©2025 Firia Labs Appendix A 58 of 104

Say you want to start moving forward, and then while still moving
continuously check some sensors, or blink LEDs, or play sounds, etc.
The non-blocking functions start a movement, then return
immediately.

You must then send another command to change or stop the
movement!

More Motion

Check the 'Trek!

CodeTrek:

 1 from codeair import *
 2 from flight import *
 3 from safety import *
 4
 5 # Repeat the flight test
 6 while True:
 7
 8 # Safety-check button press
 9 if button_arm():
10 # Begin flight!
11 pixels.fill(GREEN)
12 fly.take_off(1.0)
13
14 pixels.fill(BLUE)
15 fly.forward(2.0)

16
17 pixels.fill(YELLOW)
18 fly.land()
19
20 pixels.off()
21

Goal:

Add a call to fly.forward(distance) and run some test flights.

Tools Found: MotionCommander Flight Interface, Functions, Parameters, Arguments, and Returns

Solution:

 1 from codeair import *
 2 from flight import *
 3 from safety import *
 4
 5 # Repeat the flight test
 6 while True:
 7
 8 # Safety-check button press
 9 if button_arm():
10 # Begin flight!
11 pixels.fill(GREEN)
12 fly.take_off(1.0)
13
14 pixels.fill(BLUE)
15 fly.forward(2.0)
16
17 pixels.fill(YELLOW)

Once you're airborne, try flying forward before landing.

Experiment with different distances, but be sure you have enough room!
Remember, these distances are in meters.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 59 of 104

18 fly.land()
19
20 pixels.off()
21

Objective 4 - Quadcopter Sensors

Quadcopter Sensors: OODA!

"Observe, Orient, Decide, Act!" - John Boyd, Colonel USAF

Take a look at CodeAIR.

No wings, no tail, this can't be stable!

How can this thing fly?

Stable Quadcopter Flight Requires Sensors!

Sensors and electronics. Autonomous flight means those sensors have to connect to an onboard
computer CPU.

Like a well-trained fighter pilot, the computer runs a continuous OODA loop.

CodeAIR's laser rangers are a key component in keeping the drone flying at a desired altitude. The
flight module lets you read data from all the flight control sensors, so accessing range data is as simple

as:

get_data(RANGERS) # returns (fwd, up, down) distance in mm

Create a New File!

Use the File → New File menu to create a new file called Rangers.

Check the 'Trek!

Run It!

Run it, and print some laser ranger values to the Console!

Physical Interaction: Hold Your Drone

You'll need to point those rangers in different directions to achieve the Goals of this Objective!

Watch the (fwd, up, down) values stream by on the Console while you handle CodeAIR.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 60 of 104

CodeTrek:

1 from flight import *

2 while True:
3 r = get_data(RANGERS)
4 print(r)

Goals:

Watch the UP ranger measure down to 0 and up to 1000 mm or more!

Watch the FWD ranger measure down to 0 and up to 1000 mm or more!

Watch the DOWN ranger measure down to 0 and up to 1000 mm or more!

Tools Found: CPU and Peripherals, Loops, Laser Range Sensors, Flight Module, API, Print Function, Variables

Solution:

1 from flight import *
2 while True:
3 r = get_data(RANGERS)
4 print(r)

Quiz 1 - CodeAIR sensors

Question 1: Which of the following are steps to using a custom module?

done Load the source code file on CodeAIR.

done Import the source code file.

close Define a function for the module.

close Read CodeAIR's sensors.

Question 2: Which of the following are features of a blocking function?

done Code execution is paused while the function runs.

close The function returns immediately after starting execution.

done Code doesn't continue until the function finishes.

close Another command is needed to stop the function.

Question 3: What sensor is used to keep the drone flying at a desired altitude?

done Laser rangers

For this test, only the flight module is needed.

A simple while loop.

First save get_data() 's return value in a variable.
Then use the print() statement to display it on the Console.

Don't worry, you'll get to explore "variables" more deeply soon!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 61 of 104

close Pressure sensor

close Optical flow sensor

close Distance sensor

Objective 5 - Back Off!

Back Off!
Hands off my drone, dude!

How would you like to put those laser rangers to good use?
There's been talk of some shenanigans going on around here, but with technology and
some clever coding you can protect CodeAIR from nefarious hands.

Defensive Lasers
Your challenge is to use your UP ranger to detect if someone gets too close to your drone.

How close is too close? That's for YOU to decide, and code!
And I think you know what to do when an intruder is detected. Shadow... and flame!
Sensors? You're going to start with just the UP ranger, but you can always add more sensors to make the security even better!

Concept: Variables

The code below creates a variable named r, and sets it to whatever get_data() returns:

r = get_data(RANGERS)

In the last Objective, you used print(r) to show r 's value on the console.

Just a Name

A variable is a name that you attach to an object so your code can work with it.

That object can be any data: like a number, text, or even a 3- tuple like the ranger data!

You'll need to understand variables to implement your security code. Read through the variables tool entry so you're up to
speed!

Detecting an Intruder
Once you have the ranger data in a variable, how do you tell if someone is too close?

First you need to define what "too close" means. You might make a variable named too_close.
After that, you'll need to compare the distance measured by the up ranger with your too_close limit.

You've used if statements before, with True/False conditions like buttons.was_pressed().

But how about:

if up < too_close:
 # Sound the alarm!

Could your security comparison be that easy?

Flight Controller Reboot
Did you notice when you printed the ranger values to the console, the first several readings were not valid?

(None, None, None)
...
(0, 0, 0)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 62 of 104

...
(fwd, up, down)

Those (None, None, None) and (0, 0, 0) values from get_data() indicate that the flight controller has not yet finished its startup
initialization after a reboot.

When CodeAIR starts your Python code, it also reboots the flight controller!
You'll need to deal with that "startup condition" so you don't trigger a false alarm when your program first starts running.

Check the 'Trek!

Adding to your Rangers file, now expand on that test loop.

Oooh... Unpacking the ranger values is a cool trick.
Be sure to make the Alarm unique - get creative y'all!

Physical Interaction: Invisible Barrier

Test the perimeter defenses, like a velociraptor in a dinosaur movie!

Hey, too bad they didn't have CodeAIR...

CodeTrek:

 1 """Laser presence detection system"""
 2 from codeair import *
 3 from flight import *
 4 from time import sleep

 5
 6 # How close is too close? (millimeters)
 7 too_close = 300

 8
 9 def alarm():
10 """Play one "cycle" of the alarm.
11 Called repeatedly while presence is detected.
12 """
13 pixels.fill(MAGENTA)
14 speaker.beep(1200,50)
15 pixels.off()

16
17 # Wait for Flight Controller boot
18 sleep(3)

Add a docstring comment to remind you what this program does.

And you will need the codeair module as well as sleep()

Create a new variable for the detection distance.

Quick: How many centimeters is that?

def ine a function to sound/show the alarm condition.

Define functions like this early in the file, so you can call them later on.
Notice there's a """documentation string""" here, like the one at the top of the file.

You can use functions to organize your code into meaningful bite-sized pieces.

Each piece of code has a job to do!
Each should be aptly named, commented, and easy to understand on its own.

A simple solution to the Flight Controller reboot problem.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 63 of 104

19
20 # Main Loop
21 while True:
22 # Read laser rangers
23 fwd, up, down = get_data(RANGERS)

24
25 # Alarm if presence is detected!
26 if up < too_close:
27 alarm()

Goals:

Update your while True: loop to unpack the three variables fwd, up, and down from get_data(RANGERS).

Use branching and comparison with the < operator to decide when to sound the alarm.

Define a function named alarm() which will be called when presence is detected.

Tools Found: Laser Range Sensors, Variables, tuple, Comparison Operators, Reboot, Loops, Assignment, Branching, Comments, Functions

Solution:

 1 """Laser presence detection system"""
 2 from codeair import *
 3 from flight import *
 4 from time import sleep
 5
 6 # How close is too close? (millimeters)
 7 too_close = 300
 8
 9 def alarm():
10 """Play one "cycle" of the alarm.
11 Called repeatedly while presence is detected.
12 """
13 pixels.fill(MAGENTA)
14 speaker.beep(1200,50)
15 pixels.off()
16
17 # Wait for Flight Controller boot
18 sleep(3)
19
20 # Main Loop
21 while True:
22 # Read laser rangers
23 fwd, up, down = get_data(RANGERS)
24
25 # Alarm if presence is detected!
26 if up < too_close:
27 alarm()

Objective 6 - Flight Ceiling

This should be enough time to ensure the first call to get_data() works.

It's your test loop - but what's this?

You are creating three variables here!

Since get_data(RANGERS) returns a tuple, you can use assignment to
"unpack" the three values into three variables. (See the assignment tool entry for more details.)

Use a branching if statement to check the results of a comparison.

Aw yeah, the good old "less than" operator!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 64 of 104

Flight Ceiling
Now how about using that UP ranger while in flight!

Detecting if there's an obstacle (or ceiling) above the drone would be a nice feature.

Basic Detection
You already know how to detect if there's something above the drone.

To start with, just add that capability to your Hover code.

Note:

Since your Hover code is using blocking functions for movement, you can't check the sensors while you're moving.

For this Objective, keep it "basic". Check the sensor after you move.
Don't worry, you will learn to use the non-blocking functions in a later Objective!

Concept: Polling

Remember that you can't use sleep(seconds) while flying, since the MotionCommander needs to continuously update the
flight controller. Instead you use the fly.steady(seconds) to keep the drone steady while it's still actively flying. This function
blocks other code from running, but it's also continuously polling the flight controller.

Polling simply means repeatedly checking something to see if anything has changed.

Your code can use polling also!
What if you loop : checking the laser ranger, and calling fly.steady(0.1) over and over?
Then you can keep flying AND check the sensor 10 times per second!

Hand → Land
The goal of this Objective is for CodeAIR - after it reaches hover - to detect when you place your hand above it.

CodeAIR should hover until it detects an object above at up < too_close.
When it detects something above, it should descend to the ground with fly.land().
If no object is detected, it should descend after a 30 second timeout.

Create a New File!

Use the File → New File menu to create a new file called Ceiling.

Check the 'Trek!

Try Your Skills

Can you make the pixel LEDs turn a different color when landing due to sensors versus a timeout?

Currently you aren't using the True/False return value from poll_sensors(). That could be useful!

CodeTrek:

 1 """Hover until an obstacle above is detected"""
 2 # TODO: Imports

 3

Add the necessary import statements!

Check your Hover program if you're not sure what you need here.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 65 of 104

 4 # How close is too close? (millimeters)
 5 too_close = 300

 6
 7 def poll_sensors(timeout):
 8 """Check sensors while flying steady. Return True if sensor event detected,
 9 or False if timeout (seconds) elapsed with no event.
10 """

11 ticks = timeout * 10
12 for i in range(ticks):
13 fly.steady(0.1) # Wait 0.1 second "tick"

14
15 # Read laser rangers and check UP distance
16 fwd, up, down = get_data(RANGERS)
17 if up < too_close:
18 # Obstacle above detected!
19 return True

20
21 # Timeout
22 return False

23
24
25 # Repeat the flight test
26 while True:
27
28 # Safety-check button press
29 if button_arm():
30 # Begin flight!
31 pixels.fill(GREEN)
32 fly.take_off(1.0)
33 pixels.fill(BLUE)
34
35 # Instead of blocking, "poll" with timeout
36 poll_sensors(30)

Just like BackOff, this is where you set the limit for detecting an obstacle.

A new function.

Like fly.steady(), this will keep flying until the timeout expires.
But it also continuously checks the UP ranger!

Basic Poll Loop

Every repeat of this loop is a tenth-second slice of time.

That's why you multiply timeout * 10 to know how many times to loop.

Ten times per second:

Check the UP ranger.
return immediately if an obstacle is detected!

If you never detected an object...

The whole timeout has elapsed.
return False to signify that.

Almost Exactly the same as your Hover code!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 66 of 104

37
38 pixels.fill(YELLOW)
39 fly.land()
40 pixels.off()
41

Goals:

Define a function called def poll_sensors(timeout) that checks the rangers 10 times per second.

It should return True if an object is detected, or return False if the timeout expires with no object detected.

Call your new poll_sensors() function to wait while hovering.

Tools
Found:

Laser Range Sensors, MotionCommander Flight Interface, Loops, RGB "pixel" LEDs, Parameters, Arguments, and Returns,
Functions

Solution:

 1 """Hover until an obstacle above is detected"""
 2 from codeair import *
 3 from flight import *
 4 from safety import *
 5
 6 # How close is too close? (millimeters)
 7 too_close = 300
 8
 9 def poll_sensors(timeout):
10 """Check sensors while flying steady. Return True if sensor event detected,
11 or False if timeout (seconds) elapsed with no event.
12 """
13 ticks = timeout * 10
14 for i in range(ticks):
15 fly.steady(0.1) # Wait 0.1 second "tick"
16
17 # Read laser rangers and check UP distance
18 fwd, up, down = get_data(RANGERS)
19 if up < too_close:
20 # Obstacle above detected!
21 return True
22
23 # Timeout
24 return False
25
26
27 # Repeat the flight test
28 while True:
29
30 # Safety-check button press
31 if button_arm():
32 # Begin flight!
33 pixels.fill(GREEN)
34 fly.take_off(1.0)
35 pixels.fill(BLUE)
36
37 # Instead of blocking, "poll" with timeout
38 poll_sensors(30)
39
40 pixels.fill(YELLOW)
41 fly.land()
42 pixels.off()
43

Objective 7 - Theremin

The only difference is to replace fly.steady() with a call to your
new poll_sensors() function.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 67 of 104

Good Vibrations
Ever heard of a Theremin?

Classically used by the Beach Boys and other bands experimenting with a
haunting "spacy" sound.
The original theremin, invented by scientist Léon Theremin in 1920, was played by
waving your hands near radio antennas. This was one of the first electronic
musical instruments!

Wave Your Hands Much?
I think I saw you recently waving your hands over CodeAIR! Since you can detect the distance pretty accurately, why not turn that into
music by making your own Theremin?

An Engineering Control Loop

You'll need to code a basic control loop - not that different from how CodeAIR's flight controller controls motors based on
sensor inputs.

Sensors Actuators

CodeAIR has many sensors, as you've seen. For flying, the motors are the actuators.
For your Theremin project, the sensor is the UP laser ranger, and the actuator is the speaker.

Concept: Continuous Sound

You've been playing "beeps" with the speaker, but what about continuous tones?

Just use a duration of 0 and the tone will keep playing until you stop it!
The speaker.off() function will stop the currently playing tone.

speaker.beep(440, 0) # Start playing 440Hz tone
do some other stuff...
speaker.off() # Stop playing

Create a New File!

Use the File → New File menu to create a new file called Theremin.

Check the 'Trek!

If you're up for it, give it a go yourself before you peek at the CodeTrek.

After all, a certain amount of debugging is good for you!

Of course, The CodeTrek has your back if you need a little guidance.

Physical Interaction: Make Some Music

Okay, so maybe it's not that musical. But you get the idea!

How does the sound change if you move your hand very slowly?
Can you explain the "grainy" sound versus a "smooth ramp"?

CodeTrek:

 1 """Theremin... CodeAIRemin?"""
 2 from codeair import *
 3 from flight import *
 4 from time import sleep

Fly with Python Mission Content

©2025 Firia Labs Appendix A 68 of 104

 5
 6 # Wait for flight controller boot
 7 sleep(3)
 8
 9 # Stop sound if greater than this distance
10 ceiling = 1500
11
12 while True:
13 fwd, up, down = get_data(RANGERS)
14
15 if up < ceiling:
16 speaker.beep(400 + up, 0)
17 else:
18 speaker.off()

19

Goal:

Run the code, and MAKE SOME NOISE with your UP ranger.

Tools Found: Motors and Props, Laser Range Sensors, Speaker, Debugging

Solution:

 1 """Theremin... CodeAIRemin?"""
 2 from codeair import *
 3 from flight import *
 4 from time import sleep
 5
 6 # Wait for flight controller boot
 7 sleep(3)
 8
 9 # Stop sound if greater than this distance
10 ceiling = 1500
11
12 while True:
13 fwd, up, down = get_data(RANGERS)
14
15 if up < ceiling:
16 speaker.beep(400 + up, 0)
17 else:
18 speaker.off()
19
20

Quiz 2 - Laser Rangers

Question 1: What line of code unpacks the data returned by the laser rangers?

done fwd, up, down = get_data(RANGERS)

close get_data.unpack()

close rangers.data()

close rangers.read()

Question 2: What is the result of the code?

too_close = 300
up = 250

This whole program is similar to your "Back Off" code, but even simpler!

Choose a ceiling value that's not too large, or else your Theremin will be constantly squealing.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 69 of 104

if up < too_close:
 return True

done True is returned

close False is returned

close Nothing happens

close The program stops

Question 3: What line of code will play a beep continuously?

done speaker.beep(440, 0)

close speaker.beep(440)

close speaker.beep(440,100)

close speaker.on(440)

Objective 8 - Hall Monitor

Hall Monitor
This Objective is all about taking your sensor processing capabilities to the next level.

So far, you've been checking your ranger sensor value against a threshold:

if value < limit:
 # Do Something!

But what if the instantaneous sensor reading is not what you're looking for?

Can your code remember stuff about this sensor data?
A simple example would be to count how many times an event happened.

Concept: Updating a Variable

You can use variables to give your code memory.

count = 0 # Remember the count
...
Detected an event!
count = count + 1 # Now count is 1
...
Detected another event
count = count + 1 # Now count is 2

Notice how the above code adds 1 to count every time an event is detected?

The count variable is first set to an integer value of 0.
Then it is used to calculate a new value, which becomes the new count.

See the assignment tool entry for more on this.

Create a New File!

Use the File → New File menu to create a new file called HallMonitor.

People Counter

Fly with Python Mission Content

©2025 Firia Labs Appendix A 70 of 104

Your challenge is to use CodeAIR to create a "Hall Monitor" which counts how many people have passed by a particular point.

Maybe you've seen "counters" like this used to monitor traffic, or secure building entrances.
Use the FORWARD laser ranger this time.

if fwd < detect_distance:

Uh-oh. Problem!?

Imagine a loop where you keep increasing the count whenever fwd < detect_distance is True.

What if someone just stands in front of the detector?
The count would constantly increase!!
One person could look like 10 people, or more.

Solution: Define Your Event

What exactly is the event that you are counting here?

When one person walks by, there are two changes as they pass:
1. person_detected : False → True
2. person_detected : True → False

So how about just counting when person_detected goes from False to True.

You'll need to track person_detected in another variable.
Hey, that's more memory you're using! With person_detected CodeAIR is remembering that there wasn't a person there before,
but now there is!

Check the 'Trek!

Your detection loop is gonna be sweet!

There's a new Concept hidden in the CodeTrek this time also.

You are not going to want to miss it!

Physical Interaction: Setting Up

CodeTrek:

 1 from codeair import *
 2 from flight import *
 3 # TODO: one more import needed here

 4
 5 detect_distance = 1000 # millimeters
 6 person_detected = False
 7 count = 0

 8
 9 # TODO: wait for flight controller to boot

10

There's a handy function you need to import, from a standard Python module.

Hint: ..."wait" for it.

Defining and initializing some variables.

In this program detect_distance doesn't change, so I should really call it a constant.
But person_detected and count are your essential memory for this program!

How many seconds do you need to sleep()?

Fly with Python Mission Content

©2025 Firia Labs Appendix A 71 of 104

11 while True:
12 fwd, up, down = get_data(RANGERS)
13 if fwd < detect_distance:
14 if not person_detected:
15 person_detected = True

16 count = count + 1
17 print("Count =", count)
18 speaker.beep(700, 100)

19 else:
20 person_detected = False

21
22

Goal:

Run your code, and test it to at least a count of 1 0.

I'll be watching your print() statements on the Console.

Tools
Found:

Laser Range Sensors, Variables, int, Assignment, Loops, Print Function, Functions, import, Constants, Logical Operators, bool,
undefined

Solution:

 1 from codeair import *
 2 from flight import *
 3 from time import sleep
 4
 5 detect_distance = 1000
 6 person_detected = False
 7 count = 0
 8
 9 sleep(3)
10
11 while True:
12 fwd, up, down = get_data(RANGERS)
13 if fwd < detect_distance:
14 if not person_detected:
15 speaker.beep(700, 100)
16 person_detected = True
17 count = count + 1
18 print("Count =", count)
19 else:
20 person_detected = False
21
22

Objective 9 - Obstacle Detection

Concept: Logical Operators

A new person has been detected. The above four lines:

1. Remember it.
2. Increase the count.
3. ==print()== it to the Console
4. Beep!

And if the ranger doesn't see anything nearby?

Make sure person_detected is set to False.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 72 of 104

Obstacle Detection and Avoidance
It's time to get your drone back in the air, and put some of your new coding skills to the test.

Types of Navigation
Autonomous vehicles can navigate without human control using various methods, each suited to
different environments and tasks. These methods can broadly be classified into Dead Reckoning and Sensor-based approaches.

Dead Reckoning

This approach calculates the vehicle's position based on its known starting point, along with records of speed, direction,
and elapsed time. Essentially, it "reckons" its location from its last known position, moving according to pre-defined
distances and turns.

While dead reckoning can be useful for short, controlled distances, it tends to accumulate errors over time. (Very
dependent on the accuracy of speed, direction, and time measurements!)

Sensor-Based Navigation

This method relies on real-time data gathered by sensors (like rangers) to detect obstacles and adjust course
accordingly. Sensor-based navigation is adaptive, allowing vehicles to respond dynamically to changes in the
environment.

Your Challenge - Escape Room
Use Sensor-Based Navigation with CodeAIR!

Explore an area autonomously by using the FORWARD laser ranger to detect walls or other objects.
Each time an obstacle is detected, make a simple 90-degree left turn, and continue exploring the space!
If no wall is encountered for 5 seconds, CodeAIR has "escaped" the room and can land victoriously!
Keep a count of turns, and light up one of the blue leds corresponding to the count.

This Objective's code will be quite similar to your Ceiling code. That's a great starting point.

Open your Ceiling code file, then:

Save to a New File!

Use the File → Save As menu to create a new file called Avoidance.

Check the 'Trek!

Be sure to start out using the recommended altitude and too_close distances.

Notice the pixel LEDs are set to different colors based on the action!

warningwarning Be ready to "box-in" CodeAIR by placing obstacles in front of it! warningwarning

Physical Interaction: Escape the Walls

Give CodeAIR a chance to escape after FOUR turns, and verify it lands gracefully.

warningwarning Try more than SEVEN turns - You'll discover a BUG! warningwarning

Got Bugs?
You should still be able to escape the room, as long as there are fewer than 8 turns.

Continue to the next Objective to fix that limitation!

CodeTrek:

Fly with Python Mission Content

©2025 Firia Labs Appendix A 73 of 104

 1 """Obstacle avoidance"""
 2 from codeair import *
 3 from flight import *
 4 from safety import *
 5
 6 too_close = 500 # Wall distance (millimeters)
 7 altitude = 0.5 # meters (safe height in case of crash)

 8
 9 def poll_sensors(timeout):
10 """Check sensors while flying steady. Return True if sensor event detected,
11 or False if timeout (seconds) elapsed with no event.
12 """
13 ticks = timeout * 10
14 for i in range(ticks):
15 fly.steady(0.1) # Wait 0.1 second "tick"

16
17 # Read laser rangers and check FORWARD distance
18 fwd, up, down = get_data(RANGERS)
19 if fwd < too_close:
20 # Obstacle in front detected!
21 return True

22
23 # Timeout
24 return False
25
26 # Repeat the flight test
27 while True:
28 count = 0
29 leds.set_mask(0, 0)

30
31 # Safety-check button press
32 if button_arm():
33 # Begin flight!
34 pixels.fill(GREEN)
35 fly.take_off(altitude)
36 pixels.fill(BLUE)
37
38 # Loop: Fly forward and make left turns!
39 while True:
40 fly.start_forward()

41 # Instead of blocking, "poll" with timeout
42 if poll_sensors(5):

Set your distances.

There might be a bug in this code that causes the drone to fall
from the sky. Keep the altitude low, just in case...

This is exactly how poll_sensors() worked in your Ceiling code.

Checking sensors in second time slices.​10
1

Check the forward sensor this time.

A shortcut to turn off ALL the blue LEDs.

You'll learn more about this function in a later Mission.
Can't wait? Check the toolbox entry :-)

A non-blocking MotionCommander function.

This function starts moving forward at the default velocity (20 cm/s) and returns immediately!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 74 of 104

43 # Detected a wall, get ready to turn
44 fly.stop()
45 pixels.fill(PINK)

46
47 # Show count of turns on LEDs
48 count = count + 1
49 leds.set(count, 50)

50
51 # Blocking turn
52 fly.turn_left(90)
53 pixels.fill(BLUE)

54 else:
55 # Escaped!
56 pixels.fill(MAGENTA)
57 break

58
59 fly.land()
60 pixels.off()
61

Goals:

Use the non-blocking fly.start_forward() function to move while checking the FORWARD ranger.

Set the blue LED to show the count of left turns.

Use the blocking fly.turn_left(90) function to turn left 90° when a wall is detected.

Tools
Found:

Laser Range Sensors, BYTE LEDs, RGB "pixel" LEDs, Debugging, MotionCommander Flight Interface, Parameters, Arguments,
and Returns, Variables

Solution:

 1 """Obstacle avoidance"""
 2 from codeair import *
 3 from flight import *
 4 from safety import *
 5
 6 too_close = 500 # Wall distance (millimeters)
 7 altitude = 0.5 # meters (safe height in case of crash)
 8
 9 def poll_sensors(timeout):
10 """Check sensors while flying steady. Return True if sensor event detected,
11 or False if timeout (seconds) elapsed with no event.
12 """
13 ticks = timeout * 10
14 for i in range(ticks):

Wait up to 5 seconds to detect a wall.

IF the forward ranger sees something, stop and prepare to turn...

Increment the count variable, and set the corresponding blue LED
to show the user how many turns the drone has made.

Use the blocking MotionCommander function fly.turn_left(90) to make a 90° left turn.

else: the poll_sensors(5) has timed out!

Flying this far with no wall = ESCAPED!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 75 of 104

15 fly.steady(0.1) # Wait 0.1 second "tick"
16
17 # Read laser rangers and check FORWARD distance
18 fwd, up, down = get_data(RANGERS)
19 if fwd < too_close:
20 # Obstacle in front detected!
21 return True
22
23 # Timeout
24 return False
25
26 # Repeat the flight test
27 while True:
28 count = 0
29 leds.set_mask(0, 0)
30
31 # Safety-check button press
32 if button_arm():
33 # Begin flight!
34 pixels.fill(GREEN)
35 fly.take_off(altitude)
36 pixels.fill(BLUE)
37
38 # Loop: Fly forward and make left turns!
39 while True:
40 fly.start_forward()
41 # Instead of blocking, "poll" with timeout
42 if poll_sensors(5):
43 # Detected a wall, get ready to turn
44 fly.stop()
45 pixels.fill(PINK)
46
47 # Show count of turns on LEDs
48 count = count + 1
49 leds.set(count, 50)
50
51 # Blocking turn
52 fly.turn_left(90)
53 pixels.fill(BLUE)
54 else:
55 # Escaped!
56 pixels.fill(MAGENTA)
57 break
58
59 fly.land()
60 pixels.off()
61

Quiz 3 - Detection

Question 1: What function is non-blocking?

done fly.start_forward()

close fly.steady(seconds)

close fly.take_off(altitude)

close fly.turn_left(degrees)

Question 2: What will print after the code runs?

my_var = True
my_var = not my_var
print(my_var)

done False

close True

Fly with Python Mission Content

©2025 Firia Labs Appendix A 76 of 104

close my_var

close An error occurs

Question 3: What is the result of the code?

count = 7
count = count + 1
if count == 8:
 pixels.fill(WHITE)

done All pixels turn WHITE

close All pixels turn off

close Nothing happens

close The program stops

Question 4: What function turns off all blue LEDs?

done leds.set_mask(0, 0)

close leds.set_off()

close leds.set(0)

close leds.set(BLACK)

Objective 10 - Escape Bug

Wipeout!
If you're not crashing, you're not coding!

What's Up?
Seriously? One little bug and CodeAIR drops like a rock!?

Yeah, pretty much. There are some major real-world disasters linked to software bugs. So it's not just you!
Oh yeah, and in this case, I set you up ;-)

LED Mischief

The blue LEDs are the culprit here. What happens when you try to light an LED that doesn't exist?

leds.set(8, 50) # There's no 8th LED...

Try it on the menu REPL
So far you have used the menu Console to output messages using the print function.

But there is an even more powerful capability hidden there. You can enter Python code interactively! Learn more in the REPL tool
entry. You can:

Test Python functions, expressions, and data types.
import libraries and experiment with APIs.

Use it as a calculator!

Your CodeAIR must be connected and stop stopped so you can interact with it on the REPL.

Open the menu Console, click in the console window and type:

Fly with Python Mission Content

©2025 Firia Labs Appendix A 77 of 104

from codeair import *
leds.set(0, 50)

You should see blue LED 0 light up!

Now try:

leds.set(8, 50)

Whoa! This throws an Exception!

So, if your PC had been connected when CodeAIR made that 8th turn, you'd have seen this on the Console:

'ValueError: LED num must have a value between 0 and 7'

What's the Fix?

There are a few directions you could take here. How do YOU want it to work? Some ideas:

1. You could reset the count back to zero every time it reaches 8.
2. Or you might just say CodeAIR only gets 7 attempts to escape, and change the code to make a graceful landing on the 8th turn.
3. OR you could leave it as-is and say you only get 7 chances before your bot is caught trying to escape and knocked out by the

"guards!"

Oooh, I like that last one! "Call it a feature" is a time-honored strategy among software engineers when a bug is discovered ;-)

Check the 'Trek!: Bugfix

I'm not going to let you use the "It's a feature!" strategy... this time.

The CodeTrek will lead you to the "Graceful Surrender" solution, where CodeAIR lands peacefully after 7 attempts.

Be sure to test your change - you'll need to make a few more turns to be sure!

CodeTrek:

 1 """Obstacle avoidance"""
 2 from codeair import *
 3 from flight import *
 4 from safety import *
 5
 6 too_close = 500 # Wall distance (millimeters)
 7 altitude = 0.5 # meters (safe height in case of crash)
 8
 9 def poll_sensors(timeout):
10 """Check sensors while flying steady. Return True if sensor event detected,
11 or False if timeout (seconds) elapsed with no event.
12 """
13 ticks = timeout * 10
14 for i in range(ticks):
15 fly.steady(0.1) # Wait 0.1 second "tick"
16
17 # Read laser rangers and check FORWARD distance
18 fwd, up, down = get_data(RANGERS)
19 if fwd < too_close:
20 # Obstacle in front detected!
21 return True
22
23 # Timeout
24 return False
25
26 # Repeat the flight test
27 while True:
28 count = 0
29 leds.set_mask(0, 0)
30
31 # Safety-check button press
32 if button_arm():
33 # Begin flight!
34 pixels.fill(GREEN)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 78 of 104

35 fly.take_off(altitude)
36 pixels.fill(BLUE)
37
38 # Loop: Fly forward and make left turns!
39 while True:
40 fly.start_forward()
41 # Instead of blocking, "poll" with timeout
42 if poll_sensors(5):
43 # Detected a wall, get ready to turn
44 fly.stop()
45 pixels.fill(PINK)
46
47 # Show count of turns on LEDs
48 count = count + 1
49 if count == 8:
50 # Yikes! Limit reached - land now.
51 pixels.fill(WHITE)
52 break

53 leds.set(count, 50)
54
55 # Blocking turn
56 fly.turn_left(90)
57 pixels.fill(BLUE)
58 else:
59 # Escaped!
60 pixels.fill(MAGENTA)
61 break
62
63 fly.land()
64 pixels.off()
65

Goal:

Fix the bug, by checking if count == 8: and taking an alternative action.

I'm looking for that exact if statement in your code.

Tools Found: BYTE LEDs, Print Function, REPL, import, API, Exception

Solution:

 1 """Obstacle avoidance"""
 2 from codeair import *
 3 from flight import *
 4 from safety import *
 5
 6 too_close = 500 # Wall distance (millimeters)
 7 altitude = 0.5 # meters (safe height in case of crash)
 8
 9 def poll_sensors(timeout):
10 """Check sensors while flying steady. Return True if sensor event detected,
11 or False if timeout (seconds) elapsed with no event.
12 """
13 ticks = timeout * 10
14 for i in range(ticks):
15 fly.steady(0.1) # Wait 0.1 second "tick"
16
17 # Read laser rangers and check FORWARD distance
18 fwd, up, down = get_data(RANGERS)
19 if fwd < too_close:
20 # Obstacle in front detected!
21 return True

Fix the bug by making a new rule:

You only get 7 attempts (turns) to make your escape!

On the 8th attempt, show the white flag of surrender and land peacefully.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 79 of 104

22
23 # Timeout
24 return False
25
26 # Repeat the flight test
27 while True:
28 count = 0
29 leds.set_mask(0, 0)
30
31 # Safety-check button press
32 if button_arm():
33 # Begin flight!
34 pixels.fill(GREEN)
35 fly.take_off(altitude)
36 pixels.fill(BLUE)
37
38 # Loop: Fly forward and make left turns!
39 while True:
40 fly.start_forward()
41 # Instead of blocking, "poll" with timeout
42 if poll_sensors(5):
43 # Detected a wall, get ready to turn
44 fly.stop()
45 pixels.fill(PINK)
46
47 # Show count of turns on LEDs
48 count = count + 1
49 if count == 8:
50 # Yikes! Limit reached - land now.
51 pixels.fill(WHITE)
52 break
53 leds.set(count, 50)
54
55 # Blocking turn
56 fly.turn_left(90)
57 pixels.fill(BLUE)
58 else:
59 # Escaped!
60 pixels.fill(MAGENTA)
61 break
62
63 fly.land()
64 pixels.off()
65

Mission 5 Complete

Spectacular Soaring!
You achieved a LOT of Python learning in this Mission. That's what it takes, if you truly want to fly
autonomously!

Algorithms, Sensors, Navigation?

Yes, if you're talking about something that flies on its own, it's gonna need all that and more.

CodeAIR has plenty more capabilities to discover.
...and you're going to learn how to master all of them, right?

Try Your Skills: Remix!

Take some time to experiment with what you've learned so far.

You have some powerful stuff in your toolbox - try it!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 80 of 104

Mission 6 - Navigate

Navigate!
In this Mission, you’ll guide CodeAIR as it explores an indoor environment using its

Flow sensor for navigation. This mission introduces concepts of position tracking, sensor
limitations, and selectable operations to control various flight parameters, giving you hands-on
experience in navigating autonomously and adapting to real-world challenges!

Mission Targets

Get ready to:

Explore Positioning Systems with the Flow sensor for x, y tracking.
Observe and analyze flow sensor accuracy by flying CodeAIR in a square.
Conduct a Battery Check to ensure safe and sustained flight.
Customize Selectable Operations to control your code's behavior at runtime.
Experiment with Flight Parameters including height, distance, and velocity.

Objective 1 - Positioning with Flow

Go with the Flow!
Positioning Systems Review
You've learned about the importance of Positioning Systems to autonomous vehicles like
CodeAIR. After all, how can it explore an area if it doesn't know its own location?

With the rangers you experienced the accuracy of Sensor-Based Navigation.
And you learned that the alternative Dead Reckoning technique relies on measured speed,
direction, and elapsed time.

CodeAIR's Speedometer?

You're going to be doing quite a lot of Dead Reckoning with CodeAIR. So
how can it measure speed and direction? A car measures how fast it's
going by sensing the rotation of the wheels. And it's pretty simple to
calculate the distance traveled (odometer) based on wheel rotation (as
easy as Pi!)

But it would be pretty awkward for a drone to have to lower a
measurement wheel to the ground to figure out how far and fast it's
going!
However, "looking at the ground" is a pretty good strategy for
measuring movement!

Concept: Flow Sensor

Measuring X, Y Movement

The Flow sensor is an optical device with a lens pointed at the ground. It's like
a very low-resolution camera that can detect just a few pixels.

Think of it like a grid with (X,Y) coordinates projected on the ground!
With good lighting the Flow sensor can discern patterns on the ground and report movement in the X and Y
directions.

What about Z?

CodeAIR moves in 3-dimensions, and the height or altitude dimension is along the Z-axis.

The X direction is FORWARD for CodeAIR.
As you've learned, the Down-facing laser ranger gives a very accurate height (Z) measurement.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 81 of 104

Delta Force

You'll use the flight module to read changes in position reported by the Flow sensor. The sensor reports changes in position or
"deltas". (From the Greek letter Δ uppercase delta, used in math and science to represent change.)

Get flow "deltas"
dx,dy = get_data(FLOW)

If you print() these deltas by themselves they're not all that helpful. But if you sum up the changes over time you can really see
how the sensor tracks CodeAIR's motion.

Pretty Printing

When you print() values to the console, the simplest thing would be something like print(x, y). The print() statement can handle
multiple variables, so you'd get output like:

0 3
-3 0
-2 2

But printing numbers with just a space between them is not very user-friendly! Wouldn't it be better if the output was:

Flow Sensor Output:
x=0, y=3
x=-3, y=0
x=-2, y=2

You can print a text message to the console by enclosing it with quotation marks to make a string, like print("Flow Sensor Output")

Concept: Format Strings

To print an integer (or other data type) Python first has to convert it to a string.

A string is just a sequence of characters all strung together. Numbers, letters, spaces, whatever!
The print() statement does the conversion automatically, but if you want more control you can use a format string.

Ex: The following prints 12345 to the Console.

x_value = 12345
print(f"x = {x_value}")

Notice the string has an f just before the first quotation mark. That's an f-string, which allows you to embed expressions
using braces!

Create a New File!

Use the File → New File menu to create a new file called FlowTracker.

Check the 'Trek!

The Flow sensor might sometimes report larger-than-expected values due to rapid movements or drift. To address this:

Ignore values over 50, as these will introduce noise in the data.
Since the values are positive AND negative, you also want to throw away large negative numbers.

In math you may have learned about the absolute value of a number.

Naturally Python has a built-in function for this. Check it out in the CodeTrek!

Run It!

Try holding CodeAIR just above a surface like a desktop, keyboard, notebook paper, etc.

∣value∣ > 50

Fly with Python Mission Content

©2025 Firia Labs Appendix A 82 of 104

Watch the menu Console as you:

Move it in the X direction across the surface.
Move it in the Y direction across the surface.

Are X and Y increasing and decreasing as shown in the diagram here?

Increasing in the direction of the arrow, decreasing when you move the opposite way!
Use the BTN_0 reset function to refresh data easily for repeated tests.

CodeTrek:

 1 from flight import *
 2 from codeair import *
 3 from time import sleep
 4
 5 # Cumulative X and Y distances traveled
 6 x = 0
 7 y = 0

 8
 9 # Wait for flight controller boot
10 sleep(3)
11
12 while True:
13 # Unpack the flow deltas
14 dx,dy = get_data(FLOW)

15
16 # Discard values exceeding +/-50
17 if abs(dx) > 50:
18 dx = 0
19 if abs(dy) > 50:
20 dy = 0

21
22 # Sum the deltas
23 x = x + dx
24 y = y + dy

25
26 # Pretty print!
27 print(f"x={x}, y={y}")

Start by initializing two variables which will hold your sum of delta measurements.
This is the accumulated distance traveled.

At the beginning of your infinite loop read the Flow sensor.

This is your delta X and delta Y measurement.

Throw away the outliers!

Notice the abs() absolute value function.
It's a Python built-in that always gives back a positive number!

The familiar "update a variable" pattern.

Remember, right-hand side is evaluated first...
Then the result is assigned to the variable on the left-hand side.

f-string!

Okay, settle down now ;-)
A format string lets you put variables like {x} and {y} right inside the message!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 83 of 104

28
29 # Reset distances if BTN_0 was pressed
30 if buttons.was_pressed(BTN_0):
31 x = y = 0

32

Goals:

Loop while reading the Flow sensor and print()ing the X, Y values.

I'll be looking for x=... and y=... on the console!

Move CodeAIR in the X-axis to measure from -50 to +50 units.

Move CodeAIR in the Y-axis to measure from -50 to +50 units.

Tools
Found:

Laser Range Sensors, Optical Flow Sensor, Pixel, Flight Module, Print Function, str, int, Data Types, Character Encoding, String
Formatting, Built-In Functions, Loops, Variables, Assignment

Solution:

 1 from flight import *
 2 from codeair import *
 3 from time import sleep
 4
 5 # Cumulative X and Y distances traveled
 6 x = 0
 7 y = 0
 8
 9 # Wait for flight controller boot
10 sleep(3)
11
12 while True:
13 # Unpack the flow deltas
14 dx,dy = get_data(FLOW)
15
16 # Discard values exceeding +/-50
17 if abs(dx) > 50:
18 dx = 0
19 if abs(dy) > 50:
20 dy = 0
21
22 # Sum the deltas
23 x = x + dx
24 y = y + dy
25
26 # Pretty print!
27 print(f"x={x}, y={y}")
28
29 # Reset distances if BTN_0 was pressed
30 if buttons.was_pressed(BTN_0):
31 x = y = 0
32

Objective 2 - Square Up!

Navigating a Pattern
Now that you're familiar with the flow sensor it's time to use it for flight navigation.

A handy reset feature.

Clear the accumulated x and y values back to zero.
Oooh, cascaded assignment. Remember, evaluate from right to left.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 84 of 104

Your first challenge will be to fly in a square.

Sounds easy, right?

Positioning System
Actually, the MotionCommander API does provide some easy-to-use
functions for navigating forward, back, left, right, etc.

These functions use the flow sensor, and the flight controller takes
care of the low-level work converting dX and dY values to an
approximate X, Y position for CodeAIR.

Concept: Sensor Fusion

Sensor Fusion
One challenge the flight
controller deals with is how
altitude affects the flow values.

To understand this, make a
small circle with your hand
as shown here.
Imagine this is the pixel size
of the flow sensor - it's your
"pixel window".
Look down at the floor,
through your "pixel window".
What happens when you
move closer?
Of course, closer to the floor means less area covered by
the pixel.
Moving at a constant horizontal speed, more stuff will pass
beneath the pixel when you're high up. So unless the altitude
is accounted for, the flow sensor will indicate a faster speed
when CodeAIR is up high, and slower speeds when it's
down low.
The flight controller continuously checks the down-facing

laser ranger so it can factor altitude into the position
calculations! When data from multiple sensors is combined
like this it's called sensor fusion - ooooh, fancy!

Sensor Drift and Accuracy
When you test your code, you'll notice the positioning is not always precise!

A well-lit, visual pattern on the floor is very helpful for the flow sensor.
But with dead reckoning like this, even small errors in position accumulate over time.
That makes it quite challenging for CodeAIR to fly a square pattern and land on exactly the same spot it started from!

Create a New File!

Use the File → New File menu to create a new file called SquareUp.

Check the 'Trek!

This code should be pretty familiar to you by now!

Check out the comments - and maybe add a few of your own.
This is your code to hack as you wish, after all!

Run It!

Try a few runs, and see how square your square can be.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 85 of 104

Experiment with the distances of the sides (make sure you have ample space!)
Try higher and lower altitudes, and see how that affects the navigation.
How about the floor surface? Test with different conditions.

CodeTrek:

 1 from flight import *
 2 from safety import *
 3 from codeair import *
 4
 5 altitude = 0.5 # meters
 6 side_distance = 1.0 # meters

 7
 8 def wait(seconds):
 9 """Fly steady, with LED indication"""
10 pixels.fill(BLUE)
11 fly.steady(seconds)
12 pixels.off()

13
14 # Repeat the flight test
15 while True:
16 if button_arm():
17
18 fly.take_off(altitude)
19 wait(1)

20
21 # Fly in a square!
22 fly.forward(side_distance)
23 wait(1)
24 fly.left(side_distance)
25 wait(1)
26 fly.back(side_distance)
27 wait(1)
28 fly.right(side_distance)
29 wait(1)

30
31 # Back to terra firma.
32 fly.land()

Define some variables you might want to experiment with later.

Better to have names for these things, rather than magic numbers down in the code.
You know, readability and all that!

A helpful function that will give a visual "pause" in flight at the corners of your square.

Or actually, anywhere you decide to call this function from.
Now with just one line of code you can do a "flash-hover!"

Take off!

And once you're up there... "Flash-Hover!"

A complete square, facing forward the whole time.

Check out MotionCommander for more details on the fly commands.

Don't forget to land.

And then your program loops back to await another button press!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 86 of 104

Goals:

Define a function wait(seconds) that shows BLUE on the CodeAIR::pixel LEDs while flying steady.

Fly in a SQUARE by using the MotionCommander functions:

fly.forward()

fly.left()

fly.back()

fly.right()

Tools
Found:

Optical Flow Sensor, MotionCommander Flight Interface, Laser Range Sensors, Comments, Functions, Variables, Readability,
Loops

Solution:

 1 from flight import *
 2 from safety import *
 3 from codeair import *
 4
 5 altitude = 0.5 # meters
 6 side_distance = 1.0 # meters
 7
 8 def wait(seconds):
 9 """Fly steady, with LED indication"""
10 pixels.fill(BLUE)
11 fly.steady(seconds)
12 pixels.off()
13
14 # Repeat the flight test
15 while True:
16 if button_arm():
17
18 fly.take_off(altitude)
19 wait(1)
20
21 # Fly in a square!
22 fly.forward(side_distance)
23 wait(1)
24 fly.left(side_distance)
25 wait(1)
26 fly.back(side_distance)
27 wait(1)
28 fly.right(side_distance)
29 wait(1)
30
31 # Back to terra firma.
32 fly.land()

Quiz 1 - Nav Basics

Question 1: If the flow sensor reports that X is increasing, which direction is CodeAIR moving?

done Forward

close Backward

close Right

close Left

Question 2: What is printed by the following?

Fly with Python Mission Content

©2025 Firia Labs Appendix A 87 of 104

x = 3
dx = 7
x = x + dx

print(f"X = {x}")

done X = 10

close 10

close X = 7

close 3

Question 3: What's the value of dy after the following code runs?

dy = -27
if abs(dy) > 20:
 dy = 0

done 0

close 27

close -27

Objective 3 - Rotate

Rotation Challenge
Ready for a curve ball? Let's dive deeper into the intricacies of CodeAIR's navigation system by exploring how
it behaves when we introduce rotation into the movements.

How do you think the flow sensor will handle it if CodeAIR rotates while navigating?
Imagine what the sensor will "see" while spinning — patterns of the ground below will swirl across its field
of view.

The Swirly Lollipop Effect
To help you picture this, think of the flow sensor as "looking" at the ground through a swirling lens. When CodeAIR rotates, the
surface patterns below will appear to spin in the opposite direction of the rotation. This creates a kind of "swirly lollipop" effect in the
flow sensor’s perspective.

What Happens During Rotation?

Unlike simple forward or side-to-side motion, rotation presents a unique challenge for processing data
from the flow sensor. The flight controller is trying to detect and calculate movement based on
changes in ground patterns. However, when CodeAIR rotates:

1. The patterns move in curved trajectories rather than linear ones.
2. The flight controller algorithms may interpret these curved patterns as unpredictable motion,

leading to drift or inaccuracies in positioning.

Save to a New File!

Use the File → Save As menu to create a new file called SquareTurns.

Check the 'Trek!

Change your code to implement the "always move forward" approach! (last time it was always FACE forward)

The wait() function helpfully shows when each movement is happening.
This version uses a loop to traverse the range(4) sides of the square!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 88 of 104

warningwarning Make sure you allow plenty of space for CodeAIR to drift through the corners! warningwarning

Physical Interaction: Test Cornering

Run a few tests with this approach to flying the square pattern. Pay close attention to what's happening!

Is the rotation itself accurate? That is, are the turns 90° as expected?
Does the flow sensor lose traction on the turns?
Try setting a different altitude - and maybe different lighting and floor patterns too.

CodeTrek:

 1 from flight import *
 2 from safety import *
 3 from codeair import *
 4
 5 altitude = 0.5 # meters
 6 side_distance = 1.0 # meters
 7
 8 def wait(seconds):
 9 """Fly steady, with LED indication"""
10 pixels.fill(BLUE)
11 fly.steady(seconds)
12 pixels.off()
13
14 # Repeat the flight test
15 while True:
16 if button_arm():
17
18 fly.take_off(altitude)
19 wait(1)
20
21 # Fly in a square, with rotations!
22 for i in range(4):
23 fly.forward(side_distance)
24 wait(1)
25 fly.turn_left(90)
26 wait(1)

27
28 # Back to terra firma.
29 fly.land()

Goal:

Replace the square sequence commands with strictly forward movement and 90° left turns.

Tools Found: Loops, Optical Flow Sensor, Ranges

Solution:

 1 from flight import *
 2 from safety import *
 3 from codeair import *
 4

Replace Lines with a Loop

A square has 4 sides, so your loop will be range(4).

See the range toolbox entry for more on that.
Be sure to wait()

After every turn!
After every forward move!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 89 of 104

 5 altitude = 0.5 # meters
 6 side_distance = 1.0 # meters
 7
 8 def wait(seconds):
 9 """Fly steady, with LED indication"""
10 pixels.fill(BLUE)
11 fly.steady(seconds)
12 pixels.off()
13
14 # Repeat the flight test
15 while True:
16 if button_arm():
17
18 fly.take_off(altitude)
19 wait(1)
20
21 # Fly in a square, with rotations!
22 for i in range(4):
23 fly.forward(side_distance)
24 wait(1)
25 fly.turn_left(90)
26 wait(1)
27
28 # Back to terra firma.
29 fly.land()

Objective 4 - Battery Check

Battery Check!
How's your battery charge level?

Hmmm... How would you know?

When CodeAIR is plugged into USB the battery is constantly being charged.

The USB port can power everything on CodeAIR except the motors.
So, while you're plugged in modifying code, the battery is getting filled up!
If you keep your CodeAIR plugged in while you're working on the code, as you make brief test flights
you'll always have plenty of charge.
But if you make really long flights, or do lots of flight testing without much time being plugged into USB,
your battery level will get low.
Starting from empty it can take around an hour to fully charge up.

Checking the Charge Level
Naturally you don't want the battery to die in the middle of a flight! So checking the
charge level is a pretty important feature.

Fortunately, CodeAIR can measure its own battery voltage.
You just need a little Python code to check the voltage and indicate status to the
user!

Concept: CodeAIR Power Monitoring

With from codex import * you get access to the power object.

That object provides some nice functions your Python code can use to determine what's going on with CodeAIR's
power supply.

volts = power.battery_voltage(10) # read batt voltage, average 10 samples
amps = power.charger_current() # read charging current
usb_connected = power.is_usb() # True if currently powered by USB

Notes:

1. When the USB is plugged-in you will see the charging voltage. This will be a pulsed voltage that's higher than the
battery voltage when unplugged. Battery level can only be assessed when you're NOT plugged into USB.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 90 of 104

2. The battery voltage will drop considerably when it's under load. Testing with the motors powered is the best way to
know the true battery level.

Power UP!

Create a New File!

Run It!

If you run the code as-is, your CodeAIR will take off, hover for 20 seconds, and then land.

While it's running you'll see the pixel LEDs flash periodically:
GREEN = HIGH
YELLOW = MEDIUM
ORANGE = LOW
RED = VERY LOW

You will see GREEN flashes if your battery is full. If you like, you can change the expected voltage levels to test color
changes, OR just extend the test run so you can watch the colors change as the battery slowly discharges.

Wait!

Run It!

CodeTrek:

 1 from codeair import *
 2 from flight import *
 3 from safety import *

 4
 5 #--- The following two functions should be copied into the safety.py program ---
 6 def check_batt():
 7 """Call this while hovering, will light LEDs and return True if batt okay to fly"""
 8 vbatt = power.battery_voltage(10)

 9 if vbatt > 3.9:
10 pixels.fill(GREEN)
11 elif vbatt > 3.6:
12 pixels.fill(YELLOW)
13 elif vbatt > 3.3:
14 pixels.fill(ORANGE)
15 else:
16 pixels.fill(RED)
17 return False
18
19 return True

20
21 def batt_check_steady(seconds=1.0):

The usual imports

Feel the power!!

Measure the battery voltage, using 10 samples to get a quick but accurate measurement.

This function does TWO things

1. Light all the pixel LEDs based on the battery level, AND leave them ON!
2. Return True if CodeAIR is good to fly, or False if there's not enough battery left.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 91 of 104

22 """While flying, check batt and show LEDs for 1s. Hold steady longer if needed."""
23 if check_batt():
24 fly.steady(0.5) # Flash briefly
25 pixels.off()
26 fly.steady(max(0.5, seconds - 0.5))
27 return True
28 else:
29 # Leave lights on and land.
30 fly.land()
31 return False

32
33 #---
34 # Test Program - do NOT put this code in safety.py
35 if button_arm():
36 fly.take_off(0.5)
37
38 # Loop for a while, testing battery while hovering
39 for i in range(10):
40
41 if not batt_check_steady(2.0):
42 break
43
44 # Land when loop ends
45 fly.land()

46
47

Goal:

Define functions check_batt() and batt_check_steady(), and run your test program that hovers while calling
batt_check_steady().

Tools Found: RGB "pixel" LEDs, Functions, import, Default function parameters, Loops

Solution:

 1 from codeair import *
 2 from flight import *
 3 from safety import *
 4
 5 #--- The following two functions should be copied into the safety.py program ---
 6 def check_batt():
 7 """Call this while hovering, will light LEDs and return True if batt okay to fly"""

The "Flying Battery Check"

Okay, remember you can't sleep() while flying. So how will you time the LED flashing?

This function uses fly.steady() for timing, to flash the LEDs ON and OFF in 1 second.
You can also (optional argument) pass it a total steady-time in seconds to fly.steady() but it's gonna
take a minimum of 1 second to flash ON and OFF.

If the battery is very low this function will land immediately!

In that case it will return False.

Test Program

The test program uses the button_arm() function from safety.py to wait for a user to arm the drone.

Then it takes off and hovers.
While hovering, it repeatedly calls batt_check_steady().
Each call takes 2.0 seconds. That includes blinking the LEDs!

So you should see CodeAIR blinking once every two seconds while hovering.

The total hover time is determined by the for loop.
For example, 10 loop iterations would take 20 seconds...

Fly with Python Mission Content

©2025 Firia Labs Appendix A 92 of 104

 8 vbatt = power.battery_voltage(10)
 9 if vbatt > 3.9:
10 pixels.fill(GREEN)
11 elif vbatt > 3.6:
12 pixels.fill(YELLOW)
13 elif vbatt > 3.3:
14 pixels.fill(ORANGE)
15 else:
16 pixels.fill(RED)
17 return False
18
19 return True
20
21 def batt_check_steady(seconds=1.0):
22 """While flying, check batt and show LEDs for 1s. Hold steady longer if needed."""
23 if check_batt():
24 fly.steady(0.5) # Flash briefly
25 pixels.off()
26 fly.steady(max(0.5, seconds - 0.5))
27 return True
28 else:
29 # Leave lights on and land.
30 fly.land()
31 return False
32
33 #---
34 # Test Program - do NOT put this code in safety.py
35 if button_arm():
36 fly.take_off(0.5)
37
38 # Loop for a while, testing battery while hovering
39 for i in range(10):
40
41 if not batt_check_steady(2.0):
42 break
43
44 # Land when loop ends
45 fly.land()
46
47

Quiz 2 - Knowledge is Power

Question 1: Why does rotation cause the flow sensor readings to drift?

done It produces curved pixel trajectories which are not properly interpreted by the flight controller.

close Rotation causes motor oscillations, which perturb the flight dynamics.

close It doesn't. Rotation has no effect on the flight controller's processing of flow sensor readings.

Question 2: What is the purpose of the battery_check_steady(seconds) function?

done To test the battery and provide a visual indication while hovering.

close To make sure the battery level does not change for a specified period seconds.

close To confirm the battery is firmly attached to CodeAIR.

Question 3: How long does the following function take to run?

Assume a fully charged battery.

isOkay = battery_check_steady(0.7)

done 1.0 sec

close 0.7 sec

Fly with Python Mission Content

©2025 Firia Labs Appendix A 93 of 104

close 1.2 sec

close 1.7 sec

Objective 5 - Selectable Ops

The Test Pilot Grind
Your next flight objective is to run a series of navigation tests.

You will be flying routes with different distances, altitudes, and speeds.
It would be very tedious to plug back in and modify your code between every test.
The test pilot grind is grueling enough already - write some code to enable easier changes!

Selectable Operations
What you need is a nice User Interface on the CodeAIR. One that lets you select different routes before each flight!

Aw, but there's no screen on this thing.
And just a couple of buttons.

No way you can make a cool, selectable user interface, right??

WRONG!

Hacker UI
Actually, you have everything you need! Just like the hackers of old, you can use those buttons and
LEDs to program your flights at runtime!

Back in the day they entered whole computer programs using toggle switches and LEDs!

Concept: Binary Numbers

The BYTE LEDs are so-named because they're arranged as a binary byte.

That's 8 bits, or "binary digits."

Take a few minutes to explore the binary toolbox entry to get familiar with how you can make numbers with ON and OFF
lights!

LED Binary Patterns

Those 8 blue LEDs can display an integer value between 0 and 255.

That's 256 different numbers, since 28 is 256!
CodeAIR's LED API also provides a way to set multiple LEDs at once in binary, using the leds.set_mask() function.

Set BYTE LEDs to 255 (all ON) with brightness=50
leds.set_mask(255, 50)

So if your flight routes (or anything else) are numbered 1, 2, 3, ... up to 255, then this fancy BYTE display can handle it!

User Interface Plan
Code a "Selectable Operations" UI using the two buttons and the LEDs.

Press BTN-1 to scroll UP through the "menu". Wrap back around to 1 if you max-out.
Show the current selection number on the BYTE LEDs in binary.

Hey, if the user doesn't know binary they got no business trying to fly a quadcopter, am I right?
Press BTN-0 to confirm the current selection, and start the action!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 94 of 104

Create a New File!

Use the File → New File menu to create a new file called utility.py.

Be sure to name it exactly this way, with the .py extension so it will remain on the CodeAIR and you can later do
from utility import *.

You will need this Selectable Ops user interface for future Missions!
Making a utility module is a good idea for miscellaneous helper functions you'll want to reuse.
As your set of utility functions grows over time, you may want to organize this into separate modules like user_ifc.py,
etc. But for now, keep it simple.

Check the 'Trek!

Run It!

Use BTN-1 to scroll, and BTN-0 to activate and test some colors.

CodeTrek:

 1 from codeair import *
 2 from time import sleep
 3
 4 def select_index(num_items):
 5 """Wait for user to select an index from 1 to num_items by scrolling in binary
 6 on the BYTE LEDs. Since zero would be all off, counting starts at 1. Max count
 7 is all on, which is 255. Use BTN_1 to select and BTN_0 to confirm. Return chosen
 8 index. Since it's 1-based you'll need to subtract 1 to use this for list indexing!
 9 """

10 num_items = min(num_items, 255)
11 choice = 1
12 leds.set_status(50)
13 leds.set_mask(choice, 50)

14 while True:
15 if buttons.was_pressed(BTN_1):
16 choice = choice + 1
17 if choice > num_items:
18 choice = 1

19 speaker.beep(880, 50)
20 leds.set_mask(choice, 50)
21 sleep(0.15)
22 buttons.was_pressed()

23 elif buttons.was_pressed(BTN_0):
24 speaker.beep(1000, 50)
25 speaker.beep(1200, 20)

select_index(num_items) is a blocking function that waits for the user to select a number.

Check out this amazing docstring. Get in the habit of documenting all your functions!

That leds.set_mask(bitmask, brightness) function is the binary way to control the BYTE LEDs.

Try something like leds.set_mask(0b10101010, 50) on the REPL and feel the power of binary!

If the user goes past the max index, wrap back around to the first one.

A little debouncing here.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 95 of 104

26 break

27
28 # Confirmation blink
29 for i in range(3):
30 leds.set_mask(choice, 70)
31 sleep(0.3)
32 leds.set_mask(0, 0)
33 sleep(0.2)

34
35 leds.set_status(0)
36 buttons.was_pressed()
37 return choice

38
39
40 # Test program for selectable ops
41 if __name__ == '__main__':
42 print("Loaded module for testing.")

43
44 color_list = [
45 BLUE,
46 WHITE,
47 GREEN,
48 RED,
49 MAGENTA
50]
51
52 # Test the selector!
53 while True:
54 i = select_index(len(color_list))
55 print("selected index=", i)
56
57 color = color_list[i - 1]
58 pixels.fill(color)
59
60 freq = 400 + i * 100
61 speaker.beep(freq, 100)

Goals:

Define a function select_index(num_items) that uses the buttons and LEDs to allow user selection of an item number.

Call the select_index() function inside a while True loop, to cycle through a list of colors.

When BTN_0 is pressed, play a "confirmation beep" and break out of the loop!

Blink the selected choice so the user is certain what was selected.

Notice leds.set_mask(0, 0) turns OFF all LEDs.

Finally, a bit more button-debouncing then return the choice.

Detecting import versus a test program run:

This utility.py file is meant to be imported by your code in the future.

And in that future code, you don't really want to run a "color selection test" every time you import utility.

The if __name__ == '__main__': detects when this program is being run as the "main program" - not an import!

Your test program loop.

Exercise and verify operation of your fancy new select_index() function
by putting it through its paces with color-selection and whatnot!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 96 of 104

Test the following sequence exactly: 1, 3, 5, 4, 2

Based on the color list in the CodeTrek, that would show: BLUE, GREEN, MAGENTA, RED, WHITE in order!

Tools
Found:

Binary Numbers, BYTE LEDs, int, API, Buttons, RGB "pixel" LEDs, Print Function, Functions, list, Comments, Parameters,
Arguments, and Returns

Solution:

 1 from codeair import *
 2 from time import sleep
 3
 4 def select_index(num_items):
 5 """Wait for user to select an index from 1 to num_items by scrolling in binary
 6 on the BYTE LEDs. Since zero would be all off, counting starts at 1. Max count
 7 is all on, which is 255. Use BTN_1 to select and BTN_0 to confirm. Return chosen
 8 index. Since it's 1-based you'll need to subtract 1 to use this for list indexing!
 9 """
10 num_items = min(num_items, 255)
11 choice = 1
12 leds.set_status(50)
13 leds.set_mask(choice, 50)
14 while True:
15 if buttons.was_pressed(BTN_1):
16 choice = choice + 1
17 if choice > num_items:
18 choice = 1
19 speaker.beep(880, 50)
20 leds.set_mask(choice, 50)
21 sleep(0.15)
22 buttons.was_pressed()
23 elif buttons.was_pressed(BTN_0):
24 speaker.beep(1000, 50)
25 speaker.beep(1200, 20)
26 break
27
28 # Confirmation blink
29 for i in range(3):
30 leds.set_mask(choice, 70)
31 sleep(0.3)
32 leds.set_mask(0, 0)
33 sleep(0.2)
34
35 leds.set_status(0)
36 buttons.was_pressed()
37 return choice
38
39
40 # Test program for selectable ops
41 if __name__ == '__main__':
42 print("Loaded module for testing.")
43
44 color_list = [
45 BLUE,
46 WHITE,
47 GREEN,
48 RED,
49 MAGENTA
50]
51
52 # Test the selector!
53 while True:
54 i = select_index(len(color_list))
55 print("selected index=", i)
56
57 color = color_list[i - 1]
58 pixels.fill(color)
59
60 freq = 400 + i * 100
61 speaker.beep(freq, 100)

Fly with Python Mission Content

©2025 Firia Labs Appendix A 97 of 104

Objective 6 - Crash Testing

Crash Testing
Ready to put your selectable ops code to work on some flight tests?

Um, yeah, about that.
Someone filed a report about your alleged "drone dropped out of the sky like a rock" incident.
Remember last Mission, the Escape challenge? That's when you learned about exceptions in
Python!

You're gonna have to put some precautions in place!

Expect the Unexpected!
Last time, you modified the code to avoid the exception altogether. But you're bound to run into more surprises in the future. How can
you handle errors you aren't expecting?

When you're coding, sometimes there are errors that keep your code from running at all.
But sometimes your code may not hit the errors until later, after CodeAIR is flying!
Robust real-world software should handle exceptions, so your program can fail gracefully.

Concept: Exception Handling

In Python, you can handle exceptions (errors that might happen during your program) using a try block:

try:
 do_something()
except:
 print("Something went wrong!")

If an error occurs in do_something() and isn’t handled there, the except block lets your program respond without crashing. For
more advanced ways to handle specific errors, check the Exception Toolbox entry.

Crash Test Code
This Objective brings in your utility.py module. You will use it to select from a list of flight routes.

But for starters, the flying part is #TODO - don't worry about that yet.
Instead, see if you can break your code without falling from the sky!

Create a New File!

Use the File → New File menu to create a new file called RouteSelect.

Check the 'Trek!

Run It!

Open the menuConsole

Use BTN-1 and BTN-0 to select/confirm index 1,2,3, and watch those print() statements showing the selected route:
Selected route: 1.5m forward at 0.3m high.
Be sure to go beyond the valid selection range (more than the route list items) to see the exception.

CodeTrek:

 1 from utility import *

Try out your new utility module.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 98 of 104

 2
 3 # List of (Height, Distance) tuples
 4 routes = [
 5 (0.3, 1.0),
 6 (0.3, 1.5),
 7 (0.3, 2.0),
 8]

 9
10 while True:
11 i = select_index(9) # Up to 9 routes?

12
13 height, dist = routes[i - 1]

14 print(f"Selected route {i}: {dist}m forward at {height}m high.")
15
16 # TODO: Fly the selected route!

17

Goals:

Import your utility module.

Make at least 3 in-range selections.

Watch the console print() statements.

Select an out of range item. Make it go BOOM!

Show me an exception so you can move on to the next Objective and handle it.

Tools Found: Exception, import, list, Assignment, tuple, Print Function

Solution:

 1 from utility import *
 2
 3 # List of (Height, Distance) tuples
 4 routes = [
 5 (0.3, 1.0),
 6 (0.3, 1.5),
 7 (0.3, 2.0),

You DID run utility.py in your last Objective, right?

Make a list of flight routes.

This is just a start.
(0.3, 1.0) → means fly at 0.3m high for a distance of 1.0m

Set up the CRASH...

Give select_index() a larger num_items than needed.
There are only 3 items in the routes list after all!

Index the selected route, and unpack the tuple into height, dist.

That's all fine if i < len(routes)

But if i is 3 or higher...

BOOM!

A nice print statement, and a #TODO you'll take care of in the next Objective.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 99 of 104

 8]
 9
10 while True:
11 i = select_index(9) # Up to 9 routes?
12
13 height, dist = routes[i - 1]
14 print(f"Selected route {i}: {dist}m forward at {height}m high.")
15
16 # TODO: Fly the selected route!
17

Quiz 3 - Exceptional

Question 1: The LEDs show the following pattern. What number is being displayed in binary?

0 0 0 0 0 0 1 1

done 3

close 2

close 1

close 4

Question 2: What is the purpose of the following line of code?

if __name__ == '__main__':

done To execute the following code block only if this file is run as the main program, not an import.

close To ensure that this code is named '__main__', regardless of the filename chosen by the programmer.

close Without this, the file cannot be imported by other programs.

Question 3: What is printed by the following code?

try:
 print("Starting")
 x = 1 / 0 # causes exception (ZeroDivisionError)
 print("Finished")
except:
 print("Ouch!")

done
Starting Ouch!

close
Starting Finished Ouch!

close
Starting Ouch! Finished

Objective 7 - Test Pilot

Test Pilot
With all that preparation, no doubt you are READY TO FLY!

Good. Because there's a lot of testing to do.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 100 of 104

Goal: Push the Limits of Flow-Based Navigation
You've already experienced sensor drift and seen some of the drawbacks of dead
reckoning navigation.

Without an External Positioning System (see Concept box below) CodeAIR
will need to work hard to maintain its position, using all the sensor data it can
muster!

As the drone programmer, you need to know the limits:

How accurately can you move a particular distance, using flow sensor X/Y?
Is flow-sensor accuracy dependent on altitude?
Would a slower velocity help or hurt?

Concept: External Positioning Systems

Many drones depend on external positioning systems to determine their
location:

Outdoor drones often use GPS.
Indoor drones may rely on fixed-location beacons, which track the
drone's position. These systems can be expensive and require careful
planning and setup.

While it's possible to integrate external systems with CodeAIR using its
expansion connections, CodeAIR's default setup is designed to be self-
reliant - it figures out its own position without external help!

Test Plan

Check the 'Trek!

CodeTrek:

 1 from codeair import *
 2 from flight import *
 3 from safety import *
 4 from utility import *

 5
 6 # List of (Height, Distance) tuples
 7 routes = [
 8 (0.3, 1.0), # route 1
 9 (0.3, 1.5),
10 (0.3, 2.0),
11 (0.6, 1.0),
12 (0.6, 1.5),
13 (0.6, 2.0),
14 (1.0, 1.0),
15 (1.0, 1.5),
16 (1.0, 2.0),
17]

18
19 try:
20 while True:
21 i = select_index(len(routes))

Import your safety and utility modules.

A good starting list of routes for testing.

You'll use select_index() to choose a route from this list.
Each route contains a (height, distance) tuple.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 101 of 104

22
23 height, dist = routes[i - 1]
24 print(f"Selected route {i}: {dist}m forward at {height}m high.")

25
26 velocity = 0.2 # meters/sec

27
28 if button_arm():
29 fly.take_off(height)
30 batt_check_steady()

31
32 # Forward
33 pixels.fill(YELLOW)
34 fly.forward(dist, velocity)
35
36 # Hover pause
37 pixels.fill(BLUE)
38 fly.steady(0.5)
39
40 # Land
41 pixels.fill(WHITE)
42 fly.land()
43 pixels.off()

44
45 except:
46 # Exception! Emergency landing.
47 print("Exception!")
48 pixels.fill(PINK)
49 fly.land()

try to keep up here.

But seriously, check out how the whole while loop is indented beneath this try: statement.

Scroll down and you'll see the matching except clause. We'll get to that later!

Also, check it out:

This is how the pros call select_index().

For the num_items argument just pass the length of the list!

Subtract 1 from the selection number to index the routes list. Because ==lists= start at zero, right?

Check out how this unpacking assignment splits the tuple into height and dist variables.

The velocity doesn't change... yet.

It would be sweet to add this to the routes tuple though, eh?

Take off, then pause for a batt_check_steady().

Will do the default 1-second hover while flashing the battery status lights.

The Test Sequence

1. Fly forward at the specified height and dist.
2. Hover / pause briefly.
3. Land!

The flight stages are color coded YELLOW → BLUE → WHITE for easier tracking.

This except: block matches your try: block above.

Bright pink pixel leds will alert you that an exception happened!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 102 of 104

50

Hint:

Pixel LEDs turning PINK?

Why do they turn pink when you plug CodeAIR back into the computer.

Or, when you press the STOP button...

This is because when you press STOP, or when CodeSpace detects a new USB connection to your device, CodeSpace sends
a CTRL-C aka KeyboardInterrupt to CodeAIR.

The KeyboardInterrupt is a type of Exception.

And since your code is inside a try: block, this exception is caught by your except: block!

Goals:

Define a list of routes with at least 6 entries (tuples).

Place your main loop inside a try: block.

Land gracefully in the except: block.

When armed: Take off, check battery, fly forward, hover, then land.

Tools
Found:

Exception, Optical Flow Sensor, Laser Range Sensors, tuple, list, Loops, Indentation, Keyword and Positional Arguments,
Assignment, Variables, RGB "pixel" LEDs

Solution:

 1 from codeair import *
 2 from flight import *
 3 from safety import *
 4 from utility import *
 5
 6 # List of (Height, Distance) tuples
 7 routes = [
 8 (0.3, 1.0), # route 1
 9 (0.3, 1.5),
10 (0.3, 2.0),
11 (0.6, 1.0),
12 (0.6, 1.5),
13 (0.6, 2.0),
14 (1.0, 1.0),
15 (1.0, 1.5),
16 (1.0, 2.0),
17]
18
19 try:
20 while True:
21 i = select_index(len(routes))
22
23 height, dist = routes[i - 1]
24 print(f"Selected route {i}: {dist}m forward at {height}m high.")
25
26 velocity = 0.2 # meters/sec
27
28 if button_arm():
29 fly.take_off(height)
30 batt_check_steady()
31
32 # Forward
33 pixels.fill(YELLOW)
34 fly.forward(dist, velocity)
35
36 # Hover pause

And of course, land gracefully when the program ends rather than falling from the sky.

Fly with Python Mission Content

©2025 Firia Labs Appendix A 103 of 104

37 pixels.fill(BLUE)
38 fly.steady(0.5)
39
40 # Land
41 pixels.fill(WHITE)
42 fly.land()
43 pixels.off()
44
45 except:
46 # Exception! Emergency landing.
47 print("Exception!")
48 pixels.fill(PINK)
49 fly.land()
50

Mission 6 Complete

Nice Navigation!
You've navigated another challenging series of Objectives as you charted a course to deeper
Python knowledge, and increased mastery of your CodeAIR's onboard systems.

The flow sensor is amazing, but it has limitations which you now have a hands-on feel
for.
Checking the battery while flying is essential for safe flying, and you've now updated your
safety module with that capability.
And don't forget a nice taste of exception handling you experienced in this Mission! It
won't be your last tangle with that topic.

Try Your Skills: Remix!

Navigation challenges are a staple of aerial robotics competitions. Do a little brainstorming and write down some of your own
ideas for challenges with CodeAIR.

Could you enhance routes to run a different course based on the selection? (Not just go forward and land...)
How about adding a safety function to prevent take off if there's an object too close above CodeAIR?
...I'm sure you have LOTS more ideas!

More Missions Coming Soon!
The Firia Labs team is busy working on new Missions, and you can expect to see additional updates as
new Missions are added regularly.

There is SO much more to discover with CodeAIR!

Fly with Python Mission Content

©2025 Firia Labs Appendix A 104 of 104

